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Università di Pisa, Pisa, Italy

bini, meini, steffe @dm.unipi.it

B. Van Houdt
†

Department of Mathematics and Computer
Science

University of Antwerp, Antwerpen, Belgium

benny.vanhoudt@ua.ac.be

ABSTRACT
We analyze the problem of the numerical solution of struc-
tured Markov chains encountered in queuing models: we
describe the main computational problems and present the
most advanced algorithms currently available for their solu-
tions.

1. INTRODUCTION
We collect the most advanced algorithms for the numerical

solution of structured Markov chains encountered in queuing
problems, together with their main features and computa-
tional properties.

More specifically, we consider Quasi-Birth-Death processes
(QBD), M/G/1 and G/M/1-type Markov chains, and non-
skip-free processes (NSF). These Markov chains are defined
by a semi-infinite transition matrix P , which is either a block
tridiagonal matrix, or a (generalized) block Hessenberg ma-
trix, and except for the first block row and the first block
column, the blocks on each diagonal of P are constant. The
latter property defines the class of block Toeplitz matrices.
General references on these classes of problems can be found
in the books [18, 19, 14, 4].

The specific structures of P and the related computational
problems are described in Section 2. In Section 3 we present
a general acceleration technique which can be used by all the
algorithms. In Section 4 we describe the main features of
the algorithms for solving the computational problems of
Section 2. These algorithms are implemented in the soft-
ware tool Structured Markov chain solver, which is
described in the corresponding paper [8].

2. THE PROBLEMS
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We consider row stochastic matrices P which can be par-
titioned into m × m blocks Pi,j . The matrix P is semi-
infinite, i.e., its blocks Pi,j have subscripts i, j ∈ N. In this
framework, the main computational problem is computing
the invariant probability vector, i.e., the infinite nonnegative
row vector π such that πP = π, and πe = 1. Here e is the
vector with all its entries equal to 1. Throughout the paper
we assume P irreducible.

Due to the block structure of P , it is convenient to par-
tition the vector π into subvectors πi ∈ Rm, i ∈ N. Ac-
cording to the specific structure of P we may classify the
Markov chains into suitable classes. In this section we refer
the reader to the books [18, 19, 14, 4]. In the following sec-
tion we restrict ourselves to the standard boundary behav-
ior, the tool however also supports more general boundary
conditions.

2.1 QBD Markov chains
QBD Markov chains are defined by the transition matrix

P =

2
6666664

B0 A1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0

. . .

0
. . .

. . .

3
7777775
,

where A−1, A0, A1 ∈ Rm×m and B0, B−1 ∈ Rm×m, are
nonnegative matrices such that A−1+A0+A1, B−1+A0+A1

and B0 +A1 are stochastic. Assume that A = A−1 +A0 +A1

is irreducible. The drift of a QBD Markov chain is defined by
µ = αT(−A−1 +A1)e, where α is the stationary probability
vector of A. We recall that a QBD is positive recurrent if
µ < 0, null recurrent if µ = 0 and transient if µ > 0.

Define G, R and U the minimal nonnegative solutions of
the matrix equations

G = A−1 +A0G+A1G
2,

R = A1 +RA0 +R2A−1,

U = A0 +A1(I − U)−1A−1.

(1)

One has G = (I −U)−1A−1, R = A1(I −U)−1, moreover, if
the QBD is positive recurrent, it holds

πn = π0R
n, for n ≥ 0

π0(B0 +RB−1) = π0

π0(I −R)−1e = 1.



2.2 M/G/1-type Markov chains
M/G/1-type Markov chains are defined by the transition

matrix

P =

2
666666664

B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1

. . .

A−1 A0

. . .

0
. . .

. . .

3
777777775

,

where Ai, for i ≥ −1, and Bi, for i ≥ 0, are nonnega-
tive matrices in Rm×m such that

P+∞
i=−1 Ai,

P+∞
i=0 Bi, are

stochastic. Throughout we assume A =
P+∞
i=−1 Ai irre-

ducible. The drift of an M/G/1-type Markov chain is de-
fined by µ = αTa, where α is the stationary probability
vector of A and a =

P+∞
i=−1 iAie. We recall that a Markov

chain is recurrent iff µ ≤ 0, positive recurrent iff µ < 0 and
b =

P+∞
i=1 iBie < ∞, transient iff µ > 0, null recurrent iff

either µ = 0 or µ < 0 and
P+∞
i=−1 iBie =∞.

Define G the minimal nonnegative solution of the matrix
equation

G =
+∞X

i=−1

AiG
i+1. (2)

If the Markov chain is positive recurrent, the following
recursive formula due to Ramaswami [20] holds

πn =

 
π0B

∗
n +

n−1X

i=1

πiA
∗
n−i

!
(I −A∗0)−1, for n ≥ 1,

(3)
where

A∗n =

+∞X

i=n

AiG
i−n, B∗n =

+∞X

i=n

BiG
i−n, for n ≥ 0,

(4)
and π0 is such that

π0B
∗
0 = π0, π0b−µπ0e+π0(I−B)(I−A)#a = −µ, (5)

where B =
P+∞
n=0 Bn and the operator (·)# denotes the

group inverse.
A fast version of Ramaswami formula based on FFT is

shown in [15]. It outperforms the formula based on (3) and
(4) only if a very large number of components πn is required.

2.3 G/M/1-type Markov chains
G/M/1-type Markov chains are defined by the transition

matrix

P =

2
6666664

B0 A1 0
B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0

. . .
...

...
. . .

. . .
. . .

3
7777775
,

where A−i, i ≥ −1, and B−i, i ≥ 0 are nonnegative matrices
in Rm×m such that

Pn−1
i=−1 A−i + B−n is stochastic for all

n ≥ 0.
If A =

P+∞
i=−1 A−i is not stochastic, then the Markov

chain is positive recurrent. IfA is stochastic then the Markov
chain is positive recurrent if δ < 0, null recurrent if δ = 0,

and transient if δ > 0, where δ = αTa, α is such that
αTA = αT, αTe = 1, and a =

P+∞
i=−1 iA−ie.

Define R the minimal nonnegative solution of the matrix
equation

R =
+∞X

i=−1

Ri+1A−i. (6)

If the Markov chain is positive recurrent, then

πn = π0R
n for n ≥ 1, (7)

where π0 is characterized by the system

π0 = π0

+∞X

i=0

RiB−i, π0(I −R)−1e = 1. (8)

It is worth mentioning that, if the matrix A =
P+∞
i=−1 A−i

is irreducible and stochastic, the connection between M/G/1
and G/M/1-type Markov chains is extremely simple. In-
deed, define D = diag(α), where α is the strictly pos-

itive stationary probability vector of A and define eAi =
D−1AT

−iD, for i = −1, 0, 1, . . .. Now, take any solution R of

(6) and define eG = D−1RTD. It is easy to verify that eG is
a solution of

X =
+∞X

i=−1

eAiXi+1, (9)

A consequence of this property is that, to determine R for a
positive recurrent G/M/1-type Markov chain is equivalent
to determining G for a transient M/G/1-type Markov chain.
Conversely, to determine R for a null recurrent or transient
G/M/1-type Markov chain is equivalent to determining G
for a recurrent M/G/1-type Markov chain.

2.4 The case of Non-skip-free processes
Markov chains which are non-skip-free to lower levels are

defined by the generalized block upper Hessenberg matrix

P =

2
6666666666666666666664

B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

...
...

...
...

. . .

B−N+1 A−N+2 A−N+3 A−N+4

. . .

A−N A−N+1 A−N+2 A−N+3

. . .

A−N A−N+1 A−N+2

. . .

A−N A−N+1

. . .

A−N
. . .

0
. . .

3
7777777777777777777775

. (10)

for m ×m blocks Ai, i ≥ −N and Bi, i ≥ −N + 1, where
N ≥ 1 is an integer. Markov chains which are non-skip-
free to upper levels can be similarly defined in terms of a
generalized block lower Hessenberg matrix. The matrix P
can be reblocked into blocks Bi, i ≥ 0 and Ai, i ≥ −1 of



size mN as

P =

2
666666664

B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1

. . .

A−1 A0

. . .

0
. . .

. . .

3
777777775

. (11)

Therefore, in principle, it can be solved like a standard
M/G/1 Markov chain. In this case, the solution G of the
equation G =

P+∞
i=−1AiGi+1 can be written as

G = U−1L (12)

where

U =

2
6664

I 0
−G1 I

...
. . .

. . .

−GN−1 . . . −G1 I

3
7775 ,

L =

2
6664

GN GN−1 . . . G1

. . .
. . .

...
GN GN−1

0 GN

3
7775 ,

for suitable m×m matrices G1, . . . , GN . The matrix G can
also be written as

G = C(g)N

where g = (GN , GN−1, . . . , G1) and, given the block row
vector r = (R1, R2, . . . , RN ) we define the block companion
matrix associated with r as

C(r) =

2
6666664

0 I 0 . . . 0

0 0 I
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 0 I
R1 R2 . . . . . . RN

3
7777775
. (13)

3. SHIFT TECHNIQUES
For the sake of simplicity, assume that the matrix equation

(2) can be rewritten as

G =
MX

i=−1

AiG
i+1. (14)

In practice, this is the rule for the decay properties of the
blocks Ai. According to the sign of the drift µ define the

following blocks eAi, i ≥ −1. If µ ≤ 0 set

eA−1 = A−1(I −Q),
eAi = Ai − (

Pi
j=−1 Aj − I)Q, 0 ≤ i ≤M,

where Q = euT and u is any vector such that eTu = 1. If
µ > 0 set

eA−1 = A−1

eA0 = A0 +EA−1

eAi = Ai −E(I −Pi−1
j=−1 Aj), 1 ≤ i ≤M,

where E = uvT , with u being any nonzero vector, and v
such that vT (

PM
i=−1 Ai) = vT , vTu = 1.

Moreover, let us introduce the new equation

X =
MX

i=−1

eAiXi+1. (15)

It can be proved (see [4]) that the solution eG of smallest
spectral radius of (15) is

eG = G−Q if µ ≤ 0,
eG = G if µ > 0.

For QBD problems the new equation turns into

X = eA−1 + eA0X + eA1X
2 (16)

where for µ ≤ 0 one has eA−1 = A−1(I−Q), eA0 = A0 +A1Q,
eA1 = A1, whereas for µ > 0 one has eA−1 = A−1, eA0 =

A0 +EA−1, eA1 = (I −E)A1.
It has been proved that the roots of the polynomials ea(z) =

det(λI−PM
i=−1 z

i+1 eAi), and a(z) = det(λI−PM
i=−1 z

i+1Ai),
are the same except for the root z = 1 of a(z) which is shifted
to zero or to the infinity for ea(z) according to the sign of the
drift µ.

This tiny difference on the roots of a(z) and ea(z) makes a
great difference in the convergence speed of the algorithms
for the solution of matrix equations if applied to (14) or to
(15). In fact, iterative methods converge faster if applied to
equation (15). For more details on this shift technique we
refer the reader to [10], [4], [2].

4. THE ALGORITHMS
In this section we discuss a number of algorithms for com-

puting the minimal nonnegative solution G of the matrix
equation (2) encountered in M/G/1 problems. Concerning
the computation of the matrix R which solves (6) for G/M/1
problems, we rely on the reduction of G/M/1 to M/G/1 type
Markov chains described in section 2.

4.1 Functional iterations
Methods based on functional iterations generate a sequence
{Xk}k of matrices converging to the solution G once X0 has
been suitably chosen. We recall the three main iterations
called natural, traditional and U-based.

Xk+1 =

+∞X

i=−1

AiX
i+1
k natural, (17)

Xk+1 = (I−A0)−1
“
A−1+

+∞X

i=1

AiX
i+1
k

”
traditional, (18)

Xk+1 =
“
I −

+∞X

i=0

AiX
i
k

”−1

A−1 U-based. (19)

If the initial matrix is X0 = 0 then monotonic convergence of
Xk to G occurs for all three sequences. Convergence is linear
if µ 6= 0, sublinear if µ = 0. If the initial matrix is X0 = σI,
where σ = ρ(G) and ρ(·) denotes the spectral radius, then
monotonicity is lost but the convergence is faster. We recall
that if µ ≤ 0 then σ = 1, if µ > 0 then σ is the smallest
positive solution of the equation z = ρ(A(z)), where A(z) =P+∞
i=−1 z

i+1Ai.



The three iterations above can be applied to the “shifted”
equation (15). Local convergence is guaranteed but no anal-
ysis has been carried out concerning the convergence prop-
erties related to the choice of X0. More details on functional
iterations can be found in [4, 11, 16].

For non-skip-free Markov chains one has to compute the
matrix G of (12). In this case it is sufficient to compute the
blocks G1, . . . , GN . These matrices can be approximated
by means of the sequence of block row vectors xn, n ≥ 0
generated from x0 by:

xn+1 = [A−N , A−N+1, . . . , A−1] +
M+NX

i=N

Ai−NxnC(xn)i−N .

In fact, if x0 = 0 the sequence {xn}monotonically converges
to the first block row [GN , . . . , G1] of G. The products rj =
xnC(xn)j for j = 0, . . . ,M , are computed by means of the
equation

rj+1 = rjC(xn), j = 0, 1, . . . ,M

starting with r0 = xn. This iteration has been introduced
and analyzed in [9].

A faster convergence method is Newton’s iteration [4],
[12]. This method generates the sequence Xn+1 = Xn−Wn,
n ≥ 0, X0 = 0, where Wn solves the linear matrix equation

Wn −Kn

+∞X

i=1

Ai

i−1X

j=0

Xj
nWnX

i−j−1
n KnA−1 = Xn −KnA−1

and Kn = (I−P+∞
i=0 AiX

i
n)−1. Its convergence is quadratic

if µ 6= 0. The above matrix equation can be solved by means
of O(m6) arithmetic operations. For QBD Markov chains
the complexity reduces to O(m3).

4.2 Logarithmic reduction and cyclic reduc-
tion for QBD

Logarithmic reduction [13], [4] and cyclic reduction [5], [4]
generate sequences of matrices converging quadratically to
G provided that µ 6= 0. In the latter case, convergence turns
to linear.

If these iterations are applied to the shifted equation (15)
then quadratic convergence still occurs if µ = 0.

4.2.1 Logarithmic reduction
Logarithmic reduction is synthesized by the following equa-

tions:

B
(n+1)
−1 = (C(n))−1(B

(n)
−1 )2,

B
(n+1)
1 = (C(n))−1(B

(n)
1 )2, n ≥ 0,

(20)

where

C(n) = I −B(n)
−1B

(n)
1 −B(n)

1 B
(n)
−1 (21)

and

B
(0)
−1 = (I −A0)−1A−1, B

(0)
1 = (I −A0)−1A1.

The sequence

Gn = B
(0)
−1 +

nX

i=1

 
i−1Y

j=0

B
(j)
1

!
B

(i)
−1 (22)

converges to G.
Logarithmic reduction can be applied to the shifted equa-

tion (16) by defining B
(0)
−1 = (I − eA0)−1 eA−1, B

(0)
1 =

(I − eA0)−1 eA1. The sequence Gn of (22) converges to the

solution eG of (16).

4.2.2 Cyclic reduction
Cyclic reduction is synthesized by the following equations:

K(n) = (I −A(n)
0 )−1,

A
(n+1)
−1 = A

(n)
−1K

(n)A
(n)
−1 ,

A
(n+1)
0 = A

(n)
0 +A

(n)
−1K

(n)A
(n)
1 +A

(n)
1 K(n)A

(n)
−1 ,

A
(n+1)
1 = A

(n)
1 K(n)A

(n)
1 ,

bA(n+1)
0 = bA(n)

0 +A
(n)
1 K(n)A

(n)
−1 ,

(23)

for n = 0, 1, . . ., and bA(0)
0 = A0, A

(0)
i = Ai, i = −1, 0, 1. The

sequence

Gn = (I − bA(n)
0 )−1A−1 (24)

converges to G.
Cyclic reduction can be applied to the shifted equation

(16) by defining bA(0)
0 = eA0, A

(0)
i = eAi, i = −1, 0, 1. If

µ ≤ 0 the sequence Gn of (24) converges to G. If µ > 0 the

sequence generated by Gn = (I − bA(n)
0 )−1 eA−1 converges to

G.

4.3 Cyclic reduction for M/G/1-type Markov
chains

Cyclic reduction can be extended to M/G/1 Markov chains
by means of a functional interpretation. Given a matrix
power series F (z) =

P+∞
i=0 z

iFi define the matrix power se-
ries

Feven(z) =
1

2
(F (
√
z) + F (−√z)) =

+∞X

i=0

ziF2i,

Fodd(z) =
1

2
√
z

(F (
√
z)− F (−√z)) =

+∞X

i=0

ziF2i+1,

Let A(0)(z) =
P+∞
i=−1 z

i+1Ai, bA(0)(z) =
P+∞
i=0 z

iAi, and
define

K(n)(z) = (I −A(n)
odd(z))−1,

A(n+1)(z) = zA
(n)
odd(z) +A(n)

even(z)K(n)(z)A(n)
even(z),

bA(n+1)(z) = bA(n)
even(z) + bA(n)

odd(z)K(n)(z)A(n)
even(z).

(25)

Then the sequence

Gn = (I − bA(n)(0))−1A−1 (26)

converges to G. Convergence is quadratic if µ 6= 0, is linear
if µ = 0.

Cyclic reduction can be applied to the shifted equation
(15) by defining

A(0)(z) =

+∞X

i=−1

zi+1 eAi, bA(0)(z) =

+∞X

i=0

zi eAi.

If µ ≤ 0 the sequence Gn of (26) converges to G. If µ > 0 the

sequence generated by Gn = (I − bA(n)(0))−1 eA−1 converges
to G. If cyclic reduction is applied to the shifted equation
(15) then convergence is quadratic even if µ = 0.

Concerning the different ways for implementing cyclic re-
duction we refer the reader to the book [4, Chapter 7]. One
of the most efficient implementations relies on the technique



of evaluation/interpolation where the computation of the co-

efficients of the matrix power series A(n+1)(z) is performed
by means of a point-wise computation of the right-hand side
of (25) at the qth roots of the unity, followed by an inter-
polation stage. Here q must be a sufficiently large integer

such that
P
i≥q ||A

(n+1)
i || is negligible for some matrix norm

|| · ||. Such an integer q exists due to the decay to zero of

the coefficients A
(n+1)
i and can be efficiently computed by

means of a suitable technique of [6]. The method obtained
in this way is called point-wise cyclic reduction, its efficiency
relies on the use of FFT for performing the evaluation and
the interpolation stages [6]. Its complexity is related to the
number of interpolation points needed in the computation,
or, equivalently, to the value of the numerical degrees of the
matrix power series A(n)(z).

4.4 The Ramaswami reduction
The Ramaswami reduction [21], [4], [7] allows one to re-

duce an M/G/1-type Markov chain into a QBD process with
blocks of infinite size. In this way, algorithms for solving a
QBD can be adapted for solving an M/G/1-type Markov
chain.

Define the matrices

A1 =

2
666664

0 0
I 0

I 0
. . .

. . .

0

3
777775
, (27)

A0 =

2
6664

A0 A1 A2 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

3
7775 , (28)

and

A−1 =

2
6664

A−1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

3
7775 . (29)

Then the matrix

G =

2
6664

G 0 0 · · ·
G2 0 0 · · ·
G3 0 0 · · ·
...

...
...

. . .

3
7775 , (30)

is the minimal nonnegative solution of the equation G =
A−1 + A0G + A1G2, where G is the minimal nonnegative
solution of (1).

Logarithmic reduction and cyclic reduction can be applied
for computing G in order to compute G. The shift technique
of section 3 can be applied either to the original equation or
to the infinite QBD obtained after the Ramaswami reduc-
tion.

4.5 Invariant subspaces method
The invariant subspaces method consists in approximating

the minimal nonnegative solution G of the matrix equation
(14) by approximating the left invariant subspace of a suit-
able block companion matrix. The method can be applied
only if µ 6= 0.

Define the matrix polynomial H(t) =
PN
i=0 t

iHi as

H(t) = (1 − t)N−1(1 + t)I −
NX

i=0

(1 − t)N−i(1 + t)iAi−1,

and the matrices bHi = H−1
N Hi, i = 0, . . . , N − 1. Set h =

−[ bH0, . . . , bHN−1] and introduce the matrix

F = C(h) + sign(µ)yxT /(xTy),

where

xT =
h
xT

0
bH1 xT

0
bH2 · · · xT

0
bHN−1 xT

0

i
, y =

2
6664

y0

0
...
0

3
7775 ,

and x0, y0 are two vectors such that xT
0
bH0 = 0, bH0y0 = 0.

Define the matrix sign S = Sign(F ) given by S = limn Sn,
where Sn is the sequence generated by


S0 = F
Sn+1 = 1

2

`
Sn + S−1

n

´
, n ≥ 0.

(31)

Then I − S has rank m and by means of a rank revealing
QR factorization of I −S it is possibe to compute an Nm×
m matrix T whose columns are a basis of the linear space
spanned by the columns of I − S. Denoting T1 and T2 the
submatrices of T made up by the rows 1, 2, . . . ,m and m+
1, m+ 2, . . . , 2m, it holds

G = (T1 + T2)(T1 − T2)−1.

For positive recurrent Markov chains the convergence of Sn
to S is quadratic.

The matrix sign S can be computed by means of the iter-
ation (31) which can be stopped if ||Sn−Sn+1|| < ε for some
matrix norm ||·|| and for a given ε > 0. A different approach
is to compute S by means of the Schur decomposition of F .

Acceleration techniques have been devised based on the
computation of some determinants. For more details and for
the theory behind this technique we refer the reader to [4]
and [1]. Comparisons between cyclic reduction and invariant
subspace can be found in [17], [3].
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