
Structured Markov chains solver: software tools

D. A. Bini, B. Meini, S. Steffé
∗

Dipartimento di Matematica
Università di Pisa, Pisa, Italy

bini, meini, steffe @dm.unipi.it

B. Van Houdt
†

Department of Mathematics and Computer
Science

University of Antwerp, Antwerpen, Belgium

benny.vanhoudt@ua.ac.be

ABSTRACT
The package SMC-Solver for solving structured Markov
chains is presented. It contains the most advanced algo-
rithms for solving QBD, M/G/1 and G/M/1 problems. The
package is provided in two versions: a Matlab toolbox and a
Fortran 95 version with a user-friendly graphical interface.

1. INTRODUCTION
The package Structured Markov Chains Solver

(SMC-Solver) for solving the most important classes of
Markov chains encountered in queueing models is presented.
This package implements the most advanced available algo-
rithms for QBD, M/G/1 and G/M/1 problems. The main
features of these algorithms are reported in the paper [2] to
which we refer the reader for more details.

The algorithms have been implemented in two different
software tools: a matlab Toolbox where each method and a
set of auxiliary algorithms have been implemented as Mat-
lab functions, and a Fortran 95 package where a set of sub-
routines are given as a module. A user-friendly graphical
interface which allows an easy use of the software tool is
provided. The interface is written in C and relies on the
GTK graphic libraries.

In this paper we describe the main features and the use
of these two software tools, and report the results of a set
of numerical experiments. The software tools are available
upon request from the authors and will be made available
online.

The main problems solved by our software tools are de-
scribed below.

1.1 QBD problems

1.1.1 Computing G,R and U
∗This work has been partially supported by MIUR grant
number 2004015437.
†B. Van Houdt is a postdoctoral fellow of the FWO-
Flanders.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCTOOLS October 10, 2006, Pisa, Italy
Copyright 2006 ACM 1-59593-506-1 ...$5.00.

Given nonnegative matrices A−1, A0, A1 such that A−1 +
A0 +A1 is stochastic and irreducible, compute the minimal
nonnegative solutions G, R and U of the equations

G = A−1 +A0G+A1G
2,

R = A1 +RA0 +R2A−1,

U = A0 +A1(I − U)−1A−1.

(1)

1.1.2 Computing π
Given in addition the nonnegative matrices B0, B−1 such

that B−1+A0 +A1 and B0 +A1 are stochastic, if the QBD is
positive recurrent, compute the steady state vector π of the
QBD defined by A−1, A0, A1 and B−1, B0, see [2, Section
2.1].

1.2 M/G/1-type Markov chains

1.2.1 Computing G
Given the nonnegative matrices Ai, i = −1, 0, 1, . . ., such

that
P
iAi is stochastic and irreducible, compute the mini-

mal nonnegative solution G of the equation

G =
+∞X

i=−1

AiG
i+1. (2)

In the applications, the infinite sequence of data Ai, i =
−1, 0, 1, 2, . . ., is truncated to the finite size K such thatPK
i=−1 Ai is numerically stochastic. In this way, the equa-

tion (2) turns into

G =

KX

i=−1

AiG
i+1. (3)

1.2.2 Computing π
Given in addition the nonnegative matrices B0, B1, . . .

such that
P
iBi is stochastic, if the Markov chain is posi-

tive recurrent, compute the steady state vector π associated
with Ai and Bi, see [2, Section 2.2].

1.3 G/M/1-type Markov chains

1.3.1 Computing R
Given the nonnegative matrices Ai, i = −1, 0, 1, . . ., such

that
P
iAi is stochastic and irreducible, compute the mini-

mal nonnegative solution R of the equation

R =

+∞X

i=−1

Ri+1Ai. (4)

1.3.2 Computing π
Given in addition the nonnegative matrices B0, B1, . . ., if

the Markov chain is positive recurrent, compute the steady
state vector π associated with Ai and Bi, see [2, Section
2.3].

1.4 Non-Skip-Free Markov chains
Given the nonnegative matrices Ai, i = −N,−N + 1, . . .,

such that
P
iAi is stochastic and irreducible, compute the

minimal nonnegative solution G of the equation

G =

+∞X

i=−1

AiGi+1. (5)

where Ai are the matrices defined in [2, Section 2.4]. The
problem of determining the steady state vector π if the
Markov chain is positive recurrent, is also addressed.

2. THE MATLAB TOOL
The MATLAB implementation of the tool consists of a

collection of MATLAB functions which can be executed
from the command line (or called from within other func-
tions or scripts). This collection can be partitioned in two
subsets: (a) the functions related to Quasi Birth-and-Death
(QBD) Markov chains and (b) all functions used to solve
M/G/1, G/M/1 and Non-Skip-Free type Markov Chains.
Each function takes at least one required parameter as input
and may support several optional parameters. A call to a
function, called fname, uses the following syntax:

output para = fname(required para,optional para)

If the function produces a single output parameter O1, one
simply replaces output para by O1. In case of multiple out-
puts, O1, O2, . . . , Ok, one sets output para equal to
[O1,O2,. . . ,Ok]. If the user is only interested in the first
l < k output variables, it suffices to shorten the list to Ol.
As with any other MATLAB function, the required para field
holds the list of required parameters separated by commas:
R1,R2,. . . ,Rr.

The optional para field contains the list of optional pa-
rameters. When a function call uses no options, one simple
passes the required para field to the function. Otherwise,
a pair of inputs must be given for each optional parame-
ter used: the parameter name (pname) and the parameter
value (pvalue). The name is always placed between single
quotes, the value is placed between quotes if it holds a string
(and not a numeric value). The parameter name has to be
followed by its value, the order of the optional parameters
on the other hand is arbitrary. Hence, in case of t optional
parameters we have

optional para = ’pname1’,pvalue1,. . .,’pnamet’,pvaluet

The tool parses all optional parameters using the support
function ParseOptPara.m. As with any inbuilt MATLAB
function, help can be requested for a function part of this
tool by typing ‘help fname’ on the command line. Before
discussing the various functions of the MATLAB tool, we
introduce some optional parameters that are supported by
most functions.

2.1 General Optional Parameters

2.1.1 MaxNumIt and MaxNumComp
All functions that compute the G and/or R matrix are

of an iterative nature, except for the Invariant Subspace
approach that relies on a Schur decomposition. To avoid
infinite loops, a default maximum number of iterations is
present for all such functions. The default value is typically
about 50 for the algorithms with quadratic convergence and
10000 for those with linear convergence. One can adapt this
maximum through the optional parameter MaxNumIt. Its
parameter value is simply the maximum number of itera-
tions allowed. Whenever this maximum is reached before
satisfying the stopping criteria, a warning is generated. For
the functions that compute the components (π0,π1, . . .) of
some steady state vector π, the number of components com-
puted is determined dynamically such that the sum of the
returned components is at least 1 − 10−9. To avoid loops,
there is a default maximum of 500 components, which can
be altered through the optional parameter MaxNumComp.

2.1.2 Verbose
To get an idea of the final accuracy and progress of a

function call, one can set the Verbose option to 1. For the
iterative algorithms, an intermediate check value is printed
at the end of each iteration, together with the final residual
error of the G and/or R matrix computed. As the number of
iterations of the functional iteration (FI) approach is often
quite high, one can also assign an integer parameter value
k > 1 to the Verbose parameter. This will cause a printout
of the check value every k iterations. The default value of
this optional parameter is 0, indicating that no feedback
is provided. For the functions that determine the steady
state probabilities, setting Verbose to 1, causes MATLAB to
print the accumulated probability mass of the components
computed so far.

2.1.3 Mode
A single MATLAB function exist for each family of algo-

rithms that computes the G and/or R matrix. Examples
of families are Cyclic Reduction, Functional Iterations, In-
variant Subspace approach, etc. Within each family one can
still choose among different approaches/algorithms. The op-
tional parameter Mode determines the family member used
to perform the computations. A default member was se-
lected among each family. The specific modes for each of
the functions concerned is discussed further on.

2.2 Quasi Birth-and-Death functions: com-
puting G, R and U

The tool contains five functions to compute the G (R and
U) matrix of a QBD Markov chain. Each of these func-
tions takes three required input parameters: the matrices
A−1, A0, A1 defined in Section 1.1. Here and hereafter, the
three input matrices A−1, A0, A1 are denoted by the vari-
ables A0, A1 and A2, respectively, so that A0 is the matrix
appearing below the main diagonal and A2 above it. Thus,
G is the solution to G = A0+ A1G+ A2G2. The output para
field equals [G, R, U], meaning the user can either request
the G, the G and R matrix or all three matrices as output
variables. Each of these functions first parses the input and
optional parameters by calling the QBD ParsePara.m and
ParseOptPara.m function. Afterward, a check is performed
to see whether one of the matrices A0 or A2 is of rank one,
allowing us to provide an explicit solution for G, this is real-

ized by means of the function QBD EG.m, which we discuss
in more detail further on. Provided that no explicit solu-
tion is available, the actual computation of G starts via the
algorithm of choice.

2.2.1 QBD CR.m and QBD LR.m
The Cyclic and Logarithmic Reduction (CR and LR) con-

verge quadratically and both support two modes of opera-
tion: the Basic and the Shift mode. The difference between
both modes exists in the fact that the Shift mode performs
some pre- and postprocessing. More specifically, with the
shift we first compute the matrices Ã0, Ã1 and Ã2 by per-
forming the shift operation on A0, A1 and A2. Next, we
apply the CR/LR algorithm to Ã0, Ã1 and Ã2, instead
of A0, A1 and A2. The postprocessing occurs only in the
positive recurrent case and exists in performing a rank one
correction to G. The Shift mode is the default mode as it
may potentially speed-up the convergence of the CR/LR
algorithm. The additional cost of pre- and postprocessing
is minor compared to the actual CR/LR execution time.
The shift also makes the convergence quadratic in the null
recurrent case. The shift operation can be turned off by set-
ting the Mode option to Basic. Both functions support the
MaxNumIt and Verbose option.

2.2.2 QBD FI.m
The function based on Functional Iterations (FI) achieves

linear convergence and has six modes of operation. The
first three are the U-Based, Natural and Traditional iter-
ation. The U-Based mode is the default mode as it out-
performs the other two in terms of the number of itera-
tions. Three more modes—ShiftU-Based, ShiftNatural and
ShiftTraditional—are obtained by combining each scheme
with the shift operation, to possibly reduce the number of
iterations. Apart from the MaxNumIt and Verbose option,
this function also supports the StartValue option. This op-
tion allows the user to select another initial matrix G0, used
during the first iteration, where the default choice is G0 = 0.
A good choice for recurrent chains is to set G0 = I, while
for the transient case having G0 = ηI might result in a sig-
nificant reduction in the number of iterations. The scalar
η < 1 is the largerst eigenvalue of G, it can be found as the
Caudal characteristic of the Ramaswami dual of the QBD
process of interest (for its computation see QBD Caudal.m).

2.2.3 QBD IS.m
The Invariant Subspace (IS) approach function has three

modes of operation: the Schur, MSignStandard and MSign-
Balzer. In the Schur mode, the left invariant subspace of the
matrix Z is computed using a Schur decomposition. This
method, which is set as the default mode, is a direct method
that requires no successive iterations. It relies on the builtin
MATLAB function ordschur, which is only supported as of
MATLAB 7. If an earlier MATLAB release is used, the
function automatically switches to the MSignBalzer mode.
The other two modes compute the invariant subspace of Z
via the Matrix Sign function sign(Z), which we evaluate via
a Newton iteration Zk+1 = Zk/2 + Z−1

k /2 (guaranteeing
quadratic convergence). The MSignBalzer implements the
Balzer acceleration to improve convergence by adapting the
weights 1/2 and computes the determinant of Zk for this
purpose. We take the maximum of 10−3 and the determi-
nant’s value to avoid the algorithm from stopping prema-

turely. This function does not support the null recurrent
case.

2.2.4 QBD NI.m
The Newton Iterations (NI) support three modes of op-

eration: Sylvest, Estimat and DirectSum. They differ in
the manner in which they solve the generalized Sylvester
matrix equation of the form AXB + XC = D at each iter-
ation. The Estimat mode estimates the solution by letting
X = D − AXoldB + Xold(I − C) and therefore no longer
guarantees quadratic convergence. The Sylvest mode, which
is the default mode, solves the equation via an Hessenberg
algorithm, implemented by the QBD NI Sylvest.m support
function. Finally, the DirectSum mode reduces the problem
to a (large) linear system of equations by taking the direct
sum of both sides, it is mostly effective for small systems.

2.2.5 QBD EG.m
This function determines an explicit solution for G (R and

U) in case A0 or A2 is of rank one. For the recurrent case,
we have an immediate expression for G if A0 is rank one,
otherwise if A2 is of rank one, R can be expressed in terms
of its dominant eigenvalue η (which is computed via the
QBD Caudal.m function). The transient cases are solved by
combining the previous observations with the Ramaswami
dual.

2.3 Quasi Birth-and-Death: steady state and
support functions

Apart from the functions to compute G, the tool also pro-
vides a function to compute the steady state probability
vector and the Caudal characteristic. Details on these func-
tions are given below. Figure 1 shows the dependency graph
of all the MATLAB functions related to the QBD Markov
chains. Support functions are presented as white ellipses.
Functions that support multiple modes are represented as
square boxes holding a single gray ellipse per mode of oper-
ation. The default mode has an additional white periphery.
An arrow is draw between two functions if the execution of
the first requires a call to the second function. If a support
function is only needed in a specific mode, the arrow departs
from its corresponding ellipse.

2.3.1 QBD pi.m
The tool also contains a function QDB pi.m to compute

the steady state probability vector π = (π0,π1, . . .). This
function has three required input parameters: the matrices
R, B0 and B1. B0 characterizes the transitions from level
one to level zero and B1 from level 0 to itself. In fact, the
variables B0 and B1 represent the matrices B−1 and B0,
respectively, of Section 1.1.2. The function returns the first
n+ 1 components π0 to πn if

P
m>n πme < 10−9 (see also

Section 2.1.1). More general boundary conditions can be
dealt with through the Boundary option. With this option,
transitions from level zero to level one can occur according
to a matrix B2 (in the default usage we have B2 = A2).
Notice, B0 and B2 do not need to be square in general. The
parameter value of the Boundary option should be set to the
matrix [B2; A1+ R A2].

2.3.2 QBD Caudal.m
This function computes the dominant eigenvalue 0 < η <

1 of theR matrix that solves the matrix equation R = A2+R

QBD_CR.m

QBD_IS.m

QBD_LR.m

QBD_NI.m

QBD_FI.m

Parsing

Shift Basic

QBD_ParsePara.m

QBD_EG.m

Schur

MSignStandard

MSignBalzer

Shift Basic

Sylvest Estimat

DirectSum

QBD_NI_Sylvest.m

U-Based ShiftU-Based

Traditional ShiftTraditional

Natural ShiftNatural

ParseOptPara.m

QBD_Caudal.m

stat.m

QBD_pi.m

Figure 1: Dependency graph for the Quasi Birth-
and-Death Functionality

A1 +R2 A0, where A0, A1 and A2 characterize a recurrent
QBD Markov chain. This dominant eigenvalue is computed
via a bisection algorithm and is also known as the Caudal
characteristic. The function takes the matrices A0, A1 and
A2 as required input parameters. Setting the option Dual
to 1 causes QBD Caudal.m to compute the dominant eigen-
value of the Ramaswami dual and must only be used for
transient Markov chains. This option is useful for comput-
ing an alternate StartValue for the functional iteration (FI)
algorithm.

2.4 M/G/1 and G/M/1 functions: computing G

and R

All functions implementing an algorithm to compute the
G or R matrix of an M/G/1 or G/M/1 type Markov chain,
respectively, demand a single required input parameter: the
matrix A = [A0 A1 A2 . . . Amax], where the variables A0,
A1, . . . , Amax denote the matrices A−1, A0, A1, . . . , AK of
equation (3). For M/G/1 type Markov chains, A0 is the
block appearing below the main diagonal, for the G/M/1
type, A0 appears above the main diagonal. Four functions
are supported to compute the G matrix of the M/G/1 prob-
lem, while a single function, that relies on these four func-
tions via the Ramaswami dual, is available for the G/M/1
setting. Each of these functions start, via the support func-
tion MG1 EG.m, by checking whether G can be determined
explicitly, which is the case if A0 is of rank one. The de-
pendency graph for the M/G/1 and G/M/1 functions is de-

picted in Figure 2

2.4.1 MG1 CR.m
The Cyclic Reduction (CR) algorithm achieves quadratic

convergence and supports two modes of operation: the Shift-
PWCR and the PWCR mode. As in the QBD case, the
difference between the two modes exists in the pre- and
postprocessing performed under the ShiftPWCR mode. The
preprocessing is, in this case, taken care of by the support
function MG1 Shift.m, which computes a new matrix Ã =
[Ã0 Ã1 Ã2 . . . Ãmax]. The ShiftPWCR mode is the default
mode as it may potentially speed-up the convergence of the
CR algorithm. The additional cost of pre- and postprocess-
ing is limited compared to the actual CR execution time.
The shift operation can be turned off by setting the Mode
option to PWCR. The PWCR algorithm itself computes the
matrix power series A(n+1)(z) and Â(n+1)(z) (see [2, Section
4.3]) through a point-wise evaluation. The point-wise eval-
uation is implemented by dynamically doubling the number
of roots used in the FFT evaluation. A default maximum
of 2048 roots is enforced for each iteration. One can adapt
this number using the MaxNumRoot option. Whenever this
maximum is attained, we generate a warning that the dou-
bling process was interrupted prematurely. The MG1 CR
function also supports the MaxNumIt and Verbose option.

2.4.2 MG1 FI.m
The Functional Iteration (FI) approach supports the same

six modes of operations and optional parameters as its QBD
counterpart (see Section 2.2.2 for details). An additional
optional parameter for the M/G/1 setting is the NonZer-
oBlocks option. This option is mostly useful when the ma-
jority of the Ai blocks is equal to zero. Let S = {s1, . . . , sn}
be the positive indices of the non-zero blocks of A. Then, set-
ting the required parameter A=[A0 As1 As2 . . . Asn] and
the option value of NonZeroBlocks to [s1 s2 . . . sn], may
result in a substantial gain in the computation time. It is
also useful to avoid unnecessary memory usage of the func-
tion call. The current implementation does not support the
combination of the NonZeroBlocks option with either one of
the Shift modes. If the user does provoke such a call, the
shift operation is ignored.

2.4.3 MG1 IS.m
The Invariant Subspace (IS) function for M/G/1 type

Markov chains has the same modes of operation and restric-
tions as the QBD IS.m function (see Section 2.2.3). Except
that the MSignBalzer is now the default mode, as it tends
to be faster than the Schur mode. The current implemen-
tation only deals with the case where A(z) =

P
i Ai zi is a

matrix polynomial. The memory usage can be considerable
as the dimension of the square companion matrix is a func-
tion of the degree of A(z). The IS approach is especially
effective when A(z) is a rational power series (when the nu-
merator and denominator have a fairly small degree). We
plan to support such cases in a future implementation of the
MG1 IS.m function.

2.4.4 MG1 RR.m
The Ramaswami Reduction (RR) function converges qua-

dratically and has three modes of operation: Direct, Disp-
Struct and DispStructFFT. Let m be the block size of the
original M/G/1 type Markov chain and N be the degree of

MG1_RR.m

MG1_CR.m

MG1_IS.m

MG1_FI.m

Direct DispStruct

DispStructFFT

ParseOptPara.m

MG1_EG.m

MG1_RR_tempB.m

MG1_RR_Btemp.m

MG1_RR_tempBFFT.m

MG1_RR_BtempFFT.m

ShiftPWCR PWCR

MG1_Shift.m

MSignBalzer

Schur

MSignStandard

U-Based ShiftU-Based

Traditional ShiftTraditional

Natural ShiftNatural

GIM1_Caudal.m

stat.m

MG1_pi.m

GIM1_R.m

GIM1_pi.m

Figure 2: Dependency graph for the M/G/1 and G/M/1 Functionality

the power series A(z). The Direct mode ignores the displace-

ment structure of the matrices A
(n)
1 (see [2, Section 4.4]) and

simply stores them entirely. The time and memory complex-
ity per iteration therefore equals O((mN)3) and O((mN)2),

respectively. Both other modes exploit the fact that A
(n)
1

can be expressed in terms of five block lower triangular block
Toeplitz matrices (thereby reducing the memory usage to
O(m2N)). The DispStructFFT mode uses FFTs to com-

pute all products between A
(n)
1 and a block column vector,

whereas the DispStruct mode uses a standard approach. The
resulting time complexity equals O(m2N∗ logN∗ +m3N∗),
where N∗ is the smallers power of 2 such that N∗ ≥ N ,
with the FFTs and O(m3N2) without them. Both the Disp-
Struct and DispStructFFT make use of two MATLAB sup-
port scripts (see Figure 2). For small systems, the Direct
mode is superior and therefore set as the default mode. For
larger systems the choice between the other two modes de-
pends on the values of m and N .

2.4.5 GIM1 R.m
This function computes the R matrix of a G/M/1 type

Markov chain. It first transforms the G/M/1 type problem
characterized by the required input matrix A, into a M/G/1

problem by taking the Ramaswami dual À of A. Afterward,
it passes À to one of the M/G/1 functions to compute the
G matrix of the dual. The second required input parameter
Algor specifies the algorithm of choice, it is one of the strings
CR, FI, IS or RR. Any optional parameters, including the
NonZeroBlocks option of the FI, for the M/G/1 call can be
passed as optional parameters to the GIM1 R.m function.

The R matrix of interest is retrieved as the dual of G.

2.5 M/G/1 and G/M/1: steady state and sup-
port functions

2.5.1 MG1 pi.m
By calling this function, one computes the steady state

vector of a positive recurrent M/G/1 type Markov chain
(see Section 2.1.1 for info on the number of components
computed). There are three required input parameters: B =
[B0 B1 B2 . . . Bbmax], A = [A0 A1 A2 . . . Aamax] and the
matrix G. The matrix Bi characterizes the transitions from
level 0 to level i. For the specific case where B = A, one sim-
ply assigns the empty matrix [] to B, i.e., MG1 pi([],A,G).
In its default usage, transitions from level 1 to 0 are assumed
to occur according to the matrix A0. The more general case,
where C0 covers these transitions, can be treated via the
Boundary option. The parameter value of this option must
contain the matrix C0.

The components of π are computed via Ramaswami’s for-
mula. An implementation of the fast version of Ramaswami’s
formula, which is mainly effective if a very large number of
components is required, is currently not supported.

Finally, one can also pass the first component π0 as in-
put to the MG1 pi.m function by setting the value of the
InputPiZero option equal to π0. This option is used by the
NSF pi.m function.

2.5.2 GIM1 pi.m
The stationary vector of a positive recurrent G/M/1 type

Markov chain is obtained through this function (see Section

2.1.1 for info on the number of components computed). It
takes two required input parameters: B = [B1; B2; B3; . . . ;
Bbmax], where Bi governs the transitions from level i−1 to
level 0, i.e., it is the matrix B−i+1 appearing in [2, Section
2.3], and the matrix R. For the more general case where the
transitions from level 0 to 1 are described by a matrix B0 6=
A0, one can evoke the Boundary option, the parameter value
of which has to equal [B0; A1; A2; . . . ; Aamax].

2.6 Non-Skip-Free Markov chain functions
Non-Skip-Free (NSF) type Markov chains can be solved in

two manners. The first exists in reblocking the system to an
M/G/1 type Markov chain and applying the standard algo-
rithms for the M/G/1 type paradigm (i.e., the new block size
equals Nm, where N was the number of blocks below the
main diagonal and m the original block size). Alternatively,
when computing G, one could also exploit the specific struc-
ture of the blocks as explained in [2, Section 4.1]. The tool
contains two functions implementing the latter approach:
NSF GHT.m and NSF pi.m which are discussed below.

2.6.1 NSF GHT.m
This function computes the mN × mN size G matrix

using the functional iterations developed by Gail, Hantler
and Taylor (GHT), which converges linearly. It has twoe
required input parameters the matrix A = [A0 . . . Amax]
and an integer value N , where A0 appears N blocks below
the main diagonal and AN on the main diagonal. Thus,
the variable Ai holds the matrix Ai−N of [2, Section 2.4].
The GHT algorithm first computes the first block row of G,
which fully characterizes G, in an iterative manner and sub-
sequently constructs the remaining block rows in a direct
manner. Apart from the Verbose and MaxNumIt options,
one can also set the FirstBlockRow option value to one. As
a result only the first block row is returned as an output
variable (which can useful to suppress the memory usage).
The default value setting for FirstBlockRow is zero.

2.6.2 NSF pi.m
The steady state vector of the NSF Markov chain can

be computed through this function. It has three required
input parameters: B, A and G. The B matrix holds the
first N block rows of the transition matrix P , A equals [A0
. . . Amax] as in the NSF GHT.m function and G is the cor-
responding G matrix of size mN . Ramaswami’s formula
is used to generate the components of the π vector (the
number of which can be affected by the MaxNumComp op-
tion). For NSF chains where each of the first N block rows
is identical to A, one simply sets B equal to the empty ma-
trix []. In such particular cases we rely on a more efficient
computation of the first N components of π. When setting
the FirstBlockRow option to one, it suffices to pass the first
block row of G as input.

3. FORTRAN PACKAGE
Most part of the algorithms described in the paper [2]

have been implemented in a Fortran 95 module. The sub-
routines can be called by the user inside a main program
or, alternatively, can be used in an interactive way through
a graphical interface written in C. The graphical interface
relies on the GTK library and runs under the linux system.
In this section we give an outline about the features and the
use of the Fortran subroutines and of the graphical inter-

face. The entire package, which is still work in progress, is
available from the authors upon request.

3.1 The Fortran 95 subroutines
We report the main subroutines implemented in the pack-

age. The first two subroutines crqbd and lrqbd compute the
minimal solutions G, R and U of the equations (1). They
have the same syntax, i.e.,
subroutine crqbd(An1, A0, A1, doshift, dogth,&

eps, maxiter, G, R, U, drift, err)

subroutine lrqbd(An1, A0, A1, doshift, dogth,&

eps, maxiter, G, R, U, drift, err)

where An1, A0 and A1 are the matrix variables containing
the matrices A−1, A0 and A1 respectively; the logical vari-
ables doshift and dogth, if .true., perform the shift accel-
eration of [2, Section 3] and the GTH trick of [5] for improv-
ing numerical stability. This trick cannot be applied if the
shift acceleration is performed. The optional input variables
eps and maxiter contain the error bound for the stop con-
dition (by default eps=1.e-12) and the maximum number
of allowed iterations (by default maxiter=50), respectively.
The optional output variables G, R and U contain the solu-
tions G,R and U , respectively; drift contains the value of
the drift µ; while error is the residual error.

The subroutines pwcr and spwcr compute the solution of
the equation (3) by means of the algorithm of point-wise
cyclic reduction without the shift acceleration (pwcr) and
with the shift acceleration (spwcr). Their syntax is the
same, i.e.,
subroutine pwcr(A, eps, maxiter, &

maxintp, G, drift, err)

subroutine spwcr(A, eps, maxiter, &

maxintp, G, drift, err)

In both the subroutines, A is a three-way array where A(:,:,k)
contains the block Ak−2 for k = 1, 2, . . . , K+2; the optional
input variables eps, maxiter and maxintp contain an error
bound used in the stop condition (by default eps=1e-12),
the maximum number of iterations (by default maxiter=50)
and the maximum number of interpolation points (by de-
fault maxintp=256), respectively. The output variables G,
drift and err contain the solution G of the matrix equa-
tion (3), the drift µ and the residual error, respectively.

The subroutine fi computes G by means of functional it-
erations. The syntax is
subroutine fi(A, doshift, method, eps, &

maxiter, x0, G, drift, err)

Here, A is a three-way array where A(:,:,k) contains the
block Ak−2 for k = 1, 2, . . . , K + 2; doshift is an optional
logical variable, if .true. it performs the shift technique
(default doshift=.false.); method is an optional integer
variable which selects the functional iteration: 1→Natural
iteration, 2→Traditional iteration, 3→Method based on the
matrix U (default method=3); the optional input variables
eps and maxiter contain an error bound on the stop con-
dition (by default eps=1e-12) and the maximum number
of iterations (by default maxiter=10000); X0 is an optional
input variable which contains the initial approximation (by
default X0=0 if doshift=.true., X0=rI if doshift=.false.,
where r=ρ(G)). The output variables G, drift and err con-
tain the solution G of the matrix equation (3), the drift µ
and the residual error, respectively.

The subroutine ni computes G by means of Newton’s it-

eration. The syntax is
subroutine ni(A, eps, maxiter, G, &

drift, err)

Here, A is a three-way array where A(:,:,k) contains the
block Ak−2 for k = 1, 2, . . . , K + 2; the optional input vari-
ables eps and maxiter contain an error bound used in the
stop condition (by default eps=1e-12) and the maximum
number of iterations (by default maxiter=50). The output
variables G, drift and err contain the solution G of the
matrix equation (3), the drift µ and the residual error, re-
spectively.

The subroutine is implements the invariant subspace
method. Its syntax is
subroutine is(A, method, eps, maxiter, &

G, drift, err)

Here, A is a three-way array where A(:,:,k) contains the
block Ak−2 for k = 1, 2, . . . , K + 2; method is an optional
integer variable which selects the algorithm for computing
the invariant subspace: 1→ Matrix Sign Iteration; 2→ Ma-
trix Sign Iteration with the Balzer acceleration; 3→ Schur
Decomposition; by default method=2. The optional input
variables eps and maxiter contain an error bound on the
stop condition (by default eps=1e-12) and the maximum
number of iterations (by default maxiter=50). The output
variables G, drift and err contain the solution G of the
matrix equation (3), the drift µ and the residual error, re-
spectively.

3.2 The graphical interface
We have implemented a simple Graphical Interface in C

relying on the GTK+ 2.0 graphical libraries. The exe-
cutable runs in Linux Boxes where the corresponding GTK-
2 shared libraries are available. The Fortran routines are
linked statically, so that the executable needs neither For-
tran Compiler nor Fortran run-time libraries to run. A fully
statically linked program is discouraged by GTK+ develop-
ers.

By means of menus in the main window, the user can
easily choose the kind of problem (QBD, M/G/1, G/M/1),
either by loading one of the examples provided in the pack-
age, or by loading the input data from some external ASCII
files. In the first case, an example window allows the user
to to set up the size of the problem and some parameters.
Several formats are supported for the input files.

From the main menu the user can choose the desired al-
gorithm among Cyclic Reduction, Logarithmic Reduction,
Functional Iterations, Invariant Subspace. For each algo-
rithm the user can set additional optional parameters like
the shift acceleration, the diagonal adjustment, or can mod-
ify the values of the maximum number of iterations, the
number of interpolations points in cyclic reduction, the er-
ror bound for the stop condition. For each algorithm, the
user can select the goals, for instance, computing G, R, U
or π.

Warnings are flashed in the status line of the window for
inconsistent choices of the user and also if the selected algo-
rithms or options are not yet implemented.

The use of multithread support enables the user to
start/stop a computation just by pressing a button.

During the numerical computation, partial results, tim-
ings, and information on the evolution of the computation
are displayed in real time on a scrollable viewport of the

main window. The level of verbosity is selectable. The
buffer with the log of the session can be saved in a file.

The computed solutions (matrices, vectors) can be saved
in several ASCII formats. Morover a sparse matrix format
is suppported for reading or writing data (the computations
however do not use the sparse matrix format internally).

A viewing and editing graphical tool allows to display and
edit input matrices and to view and compare output matri-
ces. This is performed in a graphical way by representing
each element of the matrices as a small gray (or colored)
square, where the intensity varies according to the magni-
tude of the number. A good choice of the color scale allows
an immediate and intuitive viewing of some structure prop-
erties of the matrix. The numerical values of the entries are
displayed and edited in a separate small window as the user
moves the cursor on the colored squares.

A simple online window help is available.
In Figures 3, 4, 5 we display some examples of the graph-

ical interface.

Figure 3: Graphical User Interface: main window

Figure 4: Graphical User Interface: main window

4. NUMERICAL EXAMPLES
Various numerical examples performed on some test prob-

lems are presented in this section. Since the Matlab and the
Fortran versions implement the same algorithms, they per-
form similarly concerning the number of iterations and the
residual error. For this reason, we report only the results of
the Matlab version.

Figure 5: Graphical User Interface: displaying G

4.1 QBD problems
In this section we present some numerical examples to demon-
strate the performance of the QBD MATLAB functions.
This section also assists the user in making his/her choice
between the different algorithms available. Of all tests con-
ducted we report on four examples. It concerns (i) a QBD
used to analyze a wireless MAC protocol named FS-ALOHA
[4], (ii) the 32 × 32 QBD that was previously studied in [1]
(with δ = 10−3), (iii) a chain with blocks of size 40 intro-
duced in [6] to study the behavior of a video playout buffer
and (iv) the QBD considered in [8] to analyze a discrete
time tandem queue, it has blocks of size 388. We refer to
these examples as FS-ALOHA, DELTA, VIDEOPLAY and
TANDEM. The Markov chain for each of these examples
is positive recurrent. Timing was performed by MATLAB
on an Intel 2Ghz Pentium with 512 kB RAM in Realtime
mode under Windows. As the MATLAB timing granularity
on such a system is not very fine (in the millisecond range),
most computations were averaged over several runs. When-
ever the maximum number of iterations was reached, we only
reported the computation time and residual error up to the
maximum number of allowed iterations (which was lowered
to 1000 for the TANDEM case, due to the large block size).

For the FS-ALOHA case, A0 is of rank one, meaning that
an explicit expression for G and R was available. All func-
tions detected the rank one property through the QBD EG.m
function. Therefore, all algorithms required the same com-
putation time without any iterations. Table 1 reports the
results when computing the G, R and U matrix, in each of
the remaining three examples. The values in the column
labeled (R) hold the order of the maximum residual error
(for the three matrices), e.g., having a residue of 2.5 10−12

implies that (R) equals −12. Let us briefly discuss a number
of key observations. The Shift operation performed by the
CR, LR and FI algorithm results in a strong decrease in the
number of iterations in the DELTA example, whereas for the
other two examples, there is either no or hardly any gain.
This can be explained by the fact that the second largest
eigenvalue η2 of G is very close to one (above 0.99, which
seems to be caused by the strong correlation in the arrival

process of the corresponding queueing system) in the latter
two examples, while for the DELTA case it is below 0.01.
Whenever η2 is not too close to one (in the positive recur-
rent case), some reduction may be expected by performing
the shift. For the cases where the shift does not result in
a reduction, only a limited amount of resources is waisted
by performing it. Another observation related to the shift
is that setting the StartValue equal to the identity matrix
I seems to have a similar effect as the shift operation when
applied to the FI approach.

When comparing the CR and LR algorithm, we find that
both perform very similar, except that the CR algorithm
is slightly faster. We also observe that among the different
IS modes, the Schur approach results in the shortest com-
putation times in all examples. Although the NI algorithm
often requires the lowest number of iterations, it tends to be
considerably slower. Recall, the memory requirement of the
DirectSum approach is O(m4), with m the block size; there-
fore, we did not apply it to the TANDEM example where
m = 388.

4.2 M/G/1 type Markov chains
In this section we present a similar comparison, but for

the M/G/1 type paradigm. Three examples where consid-
ered that each solve a D-BMAP/D/1 queue by means of an
M/G/1 type Markov chain with a different arrival process,
i.e., D-BMAP. In the first two examples the D-BMAP is a
superposition of M ON/OFF sources as introduced in [3].
Both the ON and OFF period are geometric with a mean
of 1/a slots. While on, a source generates a packet with
probability 1/d. In the first example, which we refer to as
VBR – 20, we consider M = 20 sources, with a mean ON
period of 100 slots and let d = 10.5, meaning the load of the
queueing system equals .9524. In the second case, we obtain
a transient chain by setting M = 5, a = .0001 and d = 1.1,
meaning the load is very high and equals 4.5454. Finally,
example three is the D-BMAP developed in [7] to approx-
imate a superposition of various D-BMAPs, each used to
model a variable bit rate source, by a circulant D-BMAP. In
the first two examples both the block size m and the num-
ber of nonzero blocks N equals M + 1, while in the third we
have N = 25 blocks each of size m = 6.

An overview of the results is shown in Table 2. We can see
that the Shift is quite effective in the first and third example,
as η2 = .9170 and −0.3824, respectively. For the VBR – 5
example we have η1 = .9996 and η2 = .9946. We also notice
that even though the Shift might realize a reduction in the
number of iterations of the CR algorithm, its computation
time may be larger. This is caused by the higher number
of roots required at each iteration to perform the point-wise
evaluation. For all three examples, the fastest mode for the
RR algorithm is the Direct mode. The other two modes
become more effective when N becomes large (recall, the
memory complexity of the Direct mode is a square function
of N). For the IS approach, we find that the residual error
for the Schur mode is acceptable for the VBR – 5 example,
where there are only 6 nonzero blocks, which is no longer
the case for the other examples. Additional experiments
indicate that the IS method manages to produce a small
residual error if the degree of A(z) is very limited. The
other two IS modes of operation failed as, due to numerical
errors, the dimension of the left invariant subspace did not
match m (generating an error).

Example DELTA VIDEOPLAY TANDEM
#It Time (R) #It Time (R) #It Time (R)

Cyclic Reduction (CR)
Shift 3 .0084 -16 10 .0269 -15 12 13.16 -14
Basic 14 .0217 -16 10 .0242 -15 12 12.80 -15
Logarithmic Reduction (LR)
Shift 3 .0092 -16 10 .0297 -15 12 16.96 -14
Basic 14 .0255 -16 10 .0283 -15 12 16.59 -15
Invariant Subspace (IS)
Schur 1 .0344 -13 1 .0236 -15 1 24.08 -13
MSignBalzer 14 .0567 -12 13 .0708 -13 9 33.39 -12
MSignStandard 15 .0537 -11 14 .0758 -13 16 29.24 -14
Newton Iterarions (NI)
Sylvest 14 .2364 -16 7 .2634 -15 9 278.6 -15
Estimat 6327 7.234 -13 450 .75 -13 1000+ 899.1 -12
DirectSum 14 50.67 -16 7 84.37 -15 – – –
Functional Iterarions (FI)
U-Based 6889 5.313 -16 526 .5541 -15 1000+ 431.8 -7
ShiftU-Based 5 .0092 -16 481 .5106 -15 1000+ 432.1 -8
U-Based + Start 5 .0078 -16 450 .5453 -15 1000+ 431.5 -9
Natural 10000+ 3.297 -10 1174 .5059 -14 1000+ 215.9 -7
ShiftNatural 8 .0077 -16 1075 .4869 -14 1000+ 216.2 -7
Natural + Start 9 .0072 -16 1004 .4666 -14 1000+ 586.3 -8
Tradit. 10000+ 4.14 -13 653 .4459 -15 1000+ 404.6 -7
ShiftTradit. 5 .0080 -16 481 .3334 -15 1000+ 405.0 -1
Tradit. + Start 6 .0078 -16 561 .3928 -15 1000+ 815.8 -9

Table 1: Timing Results QBDs

Example VBR – 20 VBR – 5 CIRCULANT
#It Time (R) #It Time (R) #It Time (R)

Cyclic Reduction (CR)
Shift 11 5.242 -16 18 3.438 -16 7 .3562 -16
Basic 10 1.578 -15 17 3.928 -16 10 .1616 -14
Ramaswami Reduction (RR)
Direct 11 1.922 -16 17 .0084 -16 12 .1256 -16
DispStruct 11 9.406 -16 17 .2000 -16 12 .7384 -16
DispStructFFT 12 26.85 -16 17 1.194 -16 12 2.155 -16
Invariant Subspace (IS)
Schur 1 3.555 -7 1 .0094 -13 1 .1706 -5
Functional Iterarions (FI)
U-Based 1147 1.101 -15 10000+ 1.450 -7 1119 .3287 -15
ShiftU-Based 224 .2420 -15 10000+ 1.462 -9 19 .0084 -16
U-Based + Start 206 .2190 -15 4503 .6594 -15 20 .0075 -16
Natural 2560 1.750 -15 10000+ .5844 -7 2270 .4612 -15
ShiftNatural 525 .3750 -15 10000+ .5906 -9 50 .0131 -15
Natural + Start 481 .3435 -15 5431 .3186 -15 51 .0125 -15
Tradit. 1635 1.640 -15 10000+ 1.656 -7 1740 .5391 -15
ShiftTradit. 247 .2500 -15 10000+ 1.637 -9 16 .0075 -15
Tradit. + Start 303 .3125 -15 4553 .7406 -15 36 .0134 -15

Table 2: Timing Results M/G/1 type

5. REFERENCES
[1] N. Akar and K. Sohraby. An invariant subspace

approach in M/G/1 and GI/M/1 type Markov chains.
Stochastic Models, 13(3):381–416, 1997.

[2] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt.
Structured Markov chains solver: algorithms.
Proceedings of SMCTOOLS, Pisa 2006, pages –, 2006.

[3] C. Blondia. A discrete-time batch Markovian arrival
process as B-ISDN traffic model. Belgian Journal of
Operations Research, Statistics and Computer Science,
32(3,4):3–23, 1993.

[4] D. V. Cortizo, J. Garćıa, C. Blondia, and
B. Van Houdt. FIFO by sets ALOHA (FS-ALOHA): a
collision resolution algorithm for the contention channel
in wireless ATM systems. Performance Evaluation,
36-37:401–427, 1999.

[5] W. K. Grassmann, M. I. Taksar, and D. P. Heyman.
Regenerative analysis and steady state distributions for
Markov chains. Oper. Res., 33(5):1107–1116, 1985.

[6] T. Hofkens, K. Spaey, and C. Blondia. Transient
analysis of the D-BMAP/G/1 queue with an
application to the dimensioning of a playout buffer for
VBR traffic. In Proc. of Networking 2004, Athens,
Greece, 2004.

[7] K. Spaey and C. Blondia. Circulant matching method
for multiplexing ATM traffic applied to video sources.
In Proc. Perf. of Infor. and Comm. Systems (PICS),
pages 234–245, Lund (Sweden), 1998.

[8] B. Van Houdt and A. Alfa. The response time in a
discrete time tandem queue with blocking, markovian
arrivals and phase-type services. Operations Research
Letters, 33:4, 2005.

