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ABSTRACT

We expand and update the software tool SMCSolver, pre-
sented at the SMCTools workshop in 2006, for the numerical
solution of structured Markov chains encountered in queuing
models. In particular the new version of the package imple-
ments different transformation techniques and different shift
strategies which are combined in order to speed up and op-
timize the solution of structured Markov chains. Numerical
experiments show the effectiveness of the new implemented
techniques.

1. INTRODUCTION

In the papers [5], [6] the authors have collected the most
efficient algorithms for solving structured Markov chains en-
countered in queueing models, and implemented it in the
software package SMCSolver. This software, in the form of
a Matlab toolbox and in a Fortran 90 package with a graph-
ical user interface, solves M/G/1 and GI/M/1-type Markov
chains, QBD processes and more. For the analysis and the
algorithmic treatment of this kind of problems we refer to
the books [2], [10], [11], [12]. The spirit of the two papers
[5], [6] was to provide a powerful tool for the practitioners
who have difficulties to get through in very advanced and
complex algorithmic techniques, and for the theoretical re-
searchers who wish to have an easy tool for carrying out
numerical experiments, in order to design new algorithmic
advances.

This software tool has shown to be very effective in many
practical situations. However, despite the sophisticated tech-
niques and the advanced algorithms, there are situations in
which some unexpected slowdown is encountered. This oc-

curs especially when the techniques of evaluation-interpolation

are applied with the algorithm of cyclic reduction for tran-
sient M/G/1-type Markov chains. In fact, in these problems
the number of interpolation points grows excessively large
and deteriorates the overall performance of the algorithm.
In our present contribution, we describe and implement
some recent techniques which enable one to improve the ef-
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ficiency of our package. More specifically, we implement
the Bright transformation introduced in [7] and analyzed in
[14], which maps a transient M/G/1-type Markov chain into
a positive recurrent GI/M/1-type Markov chain, and con-
versely. In this way, the user may apply the Bright trans-
formation or the Ramaswami transformation, both imple-
mented in the package, or combine them. According to the
positive recurrence properties or the kind of Markov chain,
one can choose and combine these transformations in order
to arrive at a more easily solvable problem.

The shift technique, introduced in the package SMCSolver
in order to accelerate convergence, has been expanded with
two new types of shifting, providing extra options for the
user which improve the performance of our software.

The paper is organized as follows. In Section 2 we recall
the basic definitions; in Section 3 we describe the Bright and
the Ramaswami transformation, while the shift techniques
are reported in Section 4. Section 5 discusses the accelera-
tion of algorithms obtained by combining the new features
of our tools. Implementation details are reported in Section
6 together with numerical results.

2. STRUCTURED MARKOV CHAINS

We recall that M/G/1-type Markov chains are defined by
the transition matrix
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where A;, for ¢ > —1, and B;, for ¢ > 0, are nonnega-
tive matrices in R™*™ such that ijoil A, Z;fg B;, are
stochastic. Throughout we assume A = Z::il A, irre-
ducible. The drift of an M/G/1-type Markov chain is defined
by i = a¥a, where a is the stationary probability vector of
Aand a =Y 1" iAe, e = (1,1,...,1)7. We recall that
a Markov chain is recurrent iff ;1 < 0, positive recurrent iff
pn<0and b= j:(’f iB;e < oo, transient iff > 0, null
recurrent iff either 4 = 0 or u < 0 and >,°°, iBje = co.

Our package computes the minimal nonnegative solution
G of the matrix equation

+oo
G= > AGT. (1)

i=—1



If the Markov chain is positive recurrent, G allows one to
compute the invariant probability vector 7 of the chain.

A GI/M/1-type Markov chains is defined by the transition
matrix

By A 0
Bf1 Ao A1
B_2 A_l AO Al

B3 A, A1 Ao

where A_;, i > —1, and B_;, ¢ > 0 are nonnegative matrices
in R™*™ gsuch that Ef;jl A_; + B_,, is stochastic for all
n > 0.

If A = Zj_oilA i is not stochastic, then the Markov
chain is positive recurrent. If A is stochastic then the Markov
chain is positive recurrent if § < 0, null recurrent if 6 = 0,
and transient if &6 > 0, where § = aTa, o is such that
a"A=a", ae=1,anda =377 iAd_se.

Our package computes the minimal nonnegative solution
R of the matrix equation

—+oo
R= > R™"A (2)

i=—1

If the Markov chain is positive recurrent, then the knowledge
of R allows one to compute the invariant probability vector
of the chain.

3. TRANSFORMATIONS

Here we recall the Ramaswami and the Bright transfor-
mations between M/G/1-type and GI/M/1-type, positive
recurrent and transient Markov chains. Assume that we
are given a GI/M/1-type Markov chain where the matrix
A= Z+°° A_; is irreducible and stochastic. The connec-
tion between this GI/M/1-type Markov chain and its duals
is extremely simple [13], [7], [14], [4].

3.1 Ramaswami dual

Define D = diag(a), where « is the strictly positive sta-
tionary probability vector of A, and set

A, =D 'AY.D, i=-1,0,1,....

The Ramaswami dual [13] of the original GI/M/1-type Markov

chain is the M/G/1-type Markov chain, with homogeneous
part defined by the blocks A;. Now, the minimal nonnega-
tive solution R of (2) is

R=D"'G"D

where G is the minimal nonnegative solution of

+oo
X=)Y Ax (3)
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A consequence of this property is that, to determine R for a
positive recurrent GI/M/1-type Markov chain is equivalent
to determining G for a transient M/G/1-type Markov chain.
Conversely, to determine R for a null recurrent or transient
GI/M/1-type Markov chain is equivalent to determining G
for a recurrent M/G/1-type Markov chain.

3.2 Bright dual

The Bright dual [7] of the GI/M/1-type Markov is an
M/G/1-type Markov chain with homogeneous part charac-
terized by the matrices

A= ATTATA, i=-1,0,1,....

Here A = diag(w), where w is the positive stochastic left
eigenvector of A(7) corresponding to the eigenvalue 7, and
A(z) = 31, 2""1 A;. The scalar 7 depends on Whether
the GI/M/1-type Markov chain is positive recurrent or tran-
sient. In the positive recurrent case we have 7 = p(R) < 1
where p(R) is the spectral radius of R, while in the transient
case T > 1 is the smallest zero of det(zI — A(z)) outside the
unit circle. In both cases, 7 can be obtained using a simple
bisection algorithm, without the need to determine R first.

The G matrix of the Bright dual satisfies the following
relation with the R matrix of the original GI/M/1-type
Markov chain:

R=7A"'GTA.

This relation enables us to obtain R from the G matrix of
its dual. Therefore, determining R for a positive recurrent
GI/M/1-type Markov chain is equivalent to determining G
for a positive recurrent M/G/1-type Markov chain. Con-
versely, determining R for transient GI/M/1-type Markov
chain is equivalent to determining G for a transient M/G/1-
type Markov chain.

4. SHIFT TECHNIQUES FOR M/G/1-TYPE
MARKOV CHAINS

For the sake of simplicity, assume that A, = 0 for ¢ >
M. The basic shift, already implemented in [6], consists in
setting

A=AL1-Q)
A —A (X, A - D,
where Q = eu’ and w is any vector such that e’u = 1,

if the Markov chain is recurrent. If the Markov chain is
transient, it consists in setting

0<i<M,

A=A,
40 =Ao+ FEA_
Ai=Ai-BE(I-YZ1 4, 1<i<M,

where E = uwv”, with u being any nonzero vector, and v

such that vT(ZiI\i_l A) =0T, vTu=1.

Moreover, let us introduce the new equation

M
X=)Y Ax* (4)

i=—1

It can be proved (see [2]) that the solution G of smallest
spectral radius of (4) is

N:G—Q if 4 <0,
G=G if p > 0.

It has been proved that the roots of the polynomials a(z) =
det(zI—X:f.Vii1 21 4;), and a(z) = det(zI—ZX‘ii1 2 Ay),
are the same except for the root z = 1 of a(z) which is shifted
to zero or to the infinity for a(z) according to the recurrent
or transient nature of the chain under consideration.



This tiny difference on the roots of a(z) and a(z) makes a
great difference in the convergence speed of the algorithms
for the solution of matrix equations if applied to (1) or to
(4). In fact, iterative methods converge faster if applied to
equation (4). More precisely, denoting by A\;, ¢ = 1,2,...,
the roots of a(z) ordered such that |A;| < |Xit1], and & =
[Aml, 1 = [Am+1], one finds that £ <1 < 7. Furthermore, if
p=0then{=n=1if p<Othené=1<nandifp>0
then{ <1<n=1.

The convergence speed of certain algorithms like cyclic re-
duction (CR) and logarithmic reduction (LR) or fixed point
iterations, depends on the ratio £/n. The smaller is this
ratio the faster is the convergence. _

In the positive recurrent case, the roots A; of a(z) are
given by Xl =Ai—1,fori=2,....,m +1, N o= 0, XZ = A\,
for ¢ > m + 1. Therefore the ratio /77 turns out to be
[Am—1l/n < &/n.

The most effective case is the null-recurrent case where
§ = n = 1. After shifting the problem one finds that the
ratio £/7 < 1.

The basic shift enables one to move the root 1 either to
zero or to infinity according to the recurrent or transient
nature of the chain. In the new version of SMCSolver, we
introduce a more general shift which consists in moving ei-
ther £ to zero or 7 to infinity or both. This may lead to a
further speed up of the algorithm.

For more details on this shift technique we refer the reader
o [8], [2], [1], [14].

5. ACCELERATION OF ALGORITHMS

Dual transformations and the shift techniques together
with their combinations, enable one to improve the efficiency
of the known algorithms implemented in SMCSolver. In par-
ticular, as pointed out in [14], the cyclic reduction algorithm
implemented with the strategy of evaluation-interpolation
at the roots of unity may dramatically reduce the compu-
tational cost due to the very low number of knots that are
needed to approximate the solution. Here we mostly report
the comments of [14] and complement them with further
remarks.

The algorithm CR applied to M/G/1 Markov chains gen-
erates a sequence of matrix power series which can be ap-
proximated with high precision by means of the evaluation-
interpolation technique. More details can be found in [2],
[3].

Given a matrix power series F(z) = Y% 2'F; define the
matrix power series

+oo
Faen(2) = 5(F(VZ) + F(—2) = Y P

+o0
Foaa(z) (F(Vz) = F(=V>2)) = ZZiF2i+1-

1
= 72\/2
Let A©(z) = Y20 2414, AO(z) = 1% 27 A,. The
algorithm CR generates the sequences
K™ (z) = (I - ALy (=)
A () = 24 (2) + AL () K™ (2) AL (2),  (5)
A () = AL (2) + AT () K™ (2) A% (2).

It is possible to show that the sequence
G = (1= A™(0)) " AL (6)

converges to G. Convergence is quadratic if p # 0, is linear
if p=0.

The computation of the coefficients of the matrix power
series A"V (z) and AlntD) (%) is performed by means of the
evaluation-interpolation technique. More specifically, the
matrix power series A (z) and A" (z) are computed at
the N-th roots of 1 for sufficiently large N, then (5) are com-
puted point-wise and the values of A™ Y (z) and g<"+l>(z)
at the N-th roots of 1 are obtained. Interpolation to these
values is used for computing the coefficients of AV (z)
and A\("H)(z). In this process, the number N must be suf-
ficiently large. If A("H)(z) were a polynomial of degree K
then N > K + 1 would be enough. If A+ (2) is a power
series with negligible coefficients for degree greater than K,
then it can be approximated by a polynomial. Therefore, in
the general case the decay properties of the coefficients of
A" (z) and A™(2) play a fundamental role.

A nice feature of this algorithm is that for positive recur-
rent Markov chains the matrix power series A" (z) quadrat-
ically converges to a matrix polynomial Ag + zA]. This
implies that in practice, the power series A(")(z) are well
approximated by polynomials of low degree. A similar prop-
erty holds for A" (z). In this way, the number of interpo-
lation points needed during the iteration can be kept small.

On the other hand, for transient Markov chains the limit
of A(”)(z) is a matrix power series and not a polynomial.
This fact implies that a large number of interpolation points
may be required by the iteration with a consequent slow
down of the algorithm even though convergence still remains
quadratic.

In the case we are given a transient M/G/1-type Markov
chain we can transform it into a positive recurrent M/G/1-
type Markov chain by the Bright dual. This fact enables us
to keep low the number of interpolation points for transient
Markov chains.

For a GI/M/1-type Markov chain, if the chain is transient
then the Ramaswami dual is a positive recurrent M/G/1-
type Markov chain, for which CR works fine. If the chain
is positive recurrent, then the Ramaswami dual is transient
and we may apply the Bright dual to the latter M/G/1-
type transient Markov chain. In this way we get a positive
recurrent M/G/1-type Markov chain.

Further acceleration of the convergence can be obtained
by applying the shift technique of £ and 7. In fact, cyclic
reduction can be applied to the shifted equation (4). It is
interesting to point out that if the shifted problem is such
that the function a(z) has no more zeros of modulus 1 then
the sequence A (z) generated by CR still converges to a
polynomial of degree 1. In this way the number of interpola-
tion points is kept small. Moreover, the convergence occurs
with a higher speed.

6. IMPLEMENTATION AND NUMERICAL
EXPERIMENTS

The transformations and the shift techniques introduced
in the previous sections have been implemented in the pack-
age SMCSolver both in the Matlab version and in the For-
tran 90 version.



In the first edition of this tool, the R matrix of a GI/M/1-
type Markov chain was computed by computing the G ma-
trix of its Ramaswami dual, from which R can be obtained
easily. In the current Matlab version of the tool, the user
can select one of two duals: the Ramaswami or Bright dual,
by setting the “Dual” parameter to “R” or “B”, respectively.
Setting the “Dual” parameter to “A” (Automatic) causes
the software to select the Bright dual for positive recur-
rent chains and the Ramaswami dual for transient ones as
this choice is typically the most efficient (for null recur-
rent chains, both duals are identical). The shift techniques
have been implemented in the following way. A “ShiftType”
option has been introduced. The option may be selected
“one”, “tau” and “dbl”; with the “one” option the root equal
to 1 is shifted to zero, or infinity, according to the recur-
rent/transient nature of the chain; with the “tau” option the
root 7 > 1 is shifted to infinity in the recurrent case, and
the root & < 1 is shifted to zero in the transient case; the
“dbl” option combines both the “one” and the “tau” shift.

In the Fortran 90 package we have inserted a new button
“Preprocessing” in the main window of the GUI. By clicking
on this button the user can select the kind of shift (“No
Shift”, “Simple Shift”, “Tau Shift” or “Double Shift”), and
the kind of dual transformation (“Auto Dual”, “Ramaswami
Dual”, “Bright Dual”, “Both Duals”) with the same behavior
as in the Matlab version. These new features are shown in
Figure 2.

The numerical experiments reported in this section are
based on the GI/M/1-type Markov chain discussed in [9] to
compute the waiting time and queue length distribution in
a discrete-time multitype queueing system with Markovian
arrivals, phase-type services and correlated customer types,
i.e., the SM[K]/PH[K]/1 queue. The arrival process consid-
ered has m = 3 states and the interarrival time in state ¢
is uniformly distributed between 1 and U;, with U; = 12,
Us = 20 and Us = 32. At each arrival instant the state
changes from ¢ to ¢ mod 3 + 1 with probability 1/s;, with
s1 = 20z, s2 = 2x and s3 = 8x. Thus, as x increases
the arrival process becomes more correlated. We will con-
sider both z = 1 and x = 100. We consider three types
of customers. A customer generated in phase i is of type 7
with probability 1/2 and of type j # i with probability 1/4,
meaning while in state 7, twice as many type ¢ customers
are generated on average, than type j # ¢ customers. The
service time of a type i customer has an discrete Erlang
distribution with k; phases and parameter p;, meaning its
mean service time is k;/p;. We set p1 = 1/2, po = 1/3 and
p3 = 2/3, while k1 =2+ 1y, k2 =4+ y and ks = 3 + y, with
y =0 or 1. Having y = 0 results in an overall load of 0.6669
(medium load), while y = 1 gives a load of 0.8904 (high
load). This results in a GI/M/1-type Markov chain with 33
nonzero blocks A1 to A_31, each of size 27 (for y = 0) or 36
(for y =1).

Figure 1 depicts the number of roots required per iteration
to compute the R matrix of the GI/M/1-type Markov chain,
by taking the dual M/G/1-type Markov chain and running
the cyclic reduction algorithm with or without shifting. Four
combinations are considered: the Bright or Ramaswami dual
and no shift or the double shift. The two other types of shift-
ing were by far inferior to the double shift as they required
many more roots per iteration, therefore they are not in-
cluded in the figure. For each of these four combinations,
we consider a medium (y = 0) and high (y = 1) load sce-

nario in combination with low (z = 1) and high (z = 100)
correlation.

Apart from depicting a bar per iteration that reflects the
number of roots required, we also added an estimate (in-
stead of a machine dependent measurement) for the number
of flops needed to perform a single FFT of the required size
for each iteration (above the bars), where we estimated the
number of flops of a size N FFT as 3/2Nlog N (the exact
number depends on the FFT-variant selected and requires at
least N log N multiplications). Thus, the ratio between two
such numbers indicates how much faster/slower the compu-
tation will be.

When we compare the Bright and Ramaswami dual with-
out shifting, we find that the Bright dual performs up to
3 times faster. The lower the load or correlation gets, the
bigger the gain. This is as expected, as higher loads and
stronger correlation implies that the dominant eigenvalue 7
of R approaches one, which determines the speed at which
the number of required roots decreases for the Bright dual.
For the high load and correlation case in Figure 1(d) we find
n = 0.9998, meaning it takes many iterations before a gain
is achieved by the Bright dual. For the medium load and
low correlation scenario in Figure 1(a) the dominant eigen-
value 7 still equals 0.942, which explains why we only gain a
factor 3. For instance, setting y = —1 would result in a load
of 0.4434 and for x = 1 the dominant eigenvalue 7 would
decrease to 0.8536, resulting in an improvement of a factor
4.68. For even smaller values of  improvements of a factor
40 or more can be achieved (see [14]).

Figure 1 indicates that the shift operation reduces the
number of iterations most notably for the high load scenarios
(in Figure 1(c) from 12 to 9 iterations, in Figure 1(d) from 21
to 14). However, more roots are sometimes required during
the first few iterations, meaning the overall performance is
only better in the high load scenario. For the double shift,
the gain achieved by the Bright dual is far less pronounced,
as the double shift typically also induces a reduction in the
number of roots required per iteration for the Ramaswami
dual (though the rate is 1/n times as slow, see [14]). For
the high load and correlation scenario, we find an identical
performance, which is not that remarkable as n = 0.9998,
meaning the rate at which the number of roots decreases is
nearly identical. Although not shown in Figure 1, the two
other types of shifting are inferior to the no shift even for
the high load scenario, due to the (much) higher number of
roots required during each iteration.

7. CONCLUSIONS

In this paper we presented an extension of the software
package SMCSolver both in the Matlab and in the Fortran
90 versions. This extension includes a preprocessing of the
original problem based on a more general shift technique
and on some dual transformations.

The Matlab version of the software is available at
ftp://ftp.win.ua.ac.be/pub/pats/tools;
the Fortran 90 version with the GUI is available at
http://bezout.dm.unipi.it/SMCSolver.
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