
Numerical Computation of Polynomial Roots

Using MPSolve

Version 2.2

Dario Andrea Bini and Giuseppe Fiorentino
Dipartimento di Matematica, Università di Pisa

Via Buonarroti 2, 56127 Pisa.
(bini@dm.unipi.it, fiorent@di.unipi.it)

January 2000

Abstract

We describe the implementation and the use of the package MPSolve
(Multiprecision Polynomial Solver) for the approximation of the roots of
a univariate polynomial p(x) =

∑n

i=0
aix

i.
The package relies on an algorithm, based on simultaneous approxima-

tion techniques, that generates a sequence A1 ⊃ A2 ⊃ . . . ⊃ Ak of nested
sets containing the root neighborhood of p(x) (defined by the precision
of the coefficients) and outputs Newton-isolated approximations of the
roots. The algorithm, particularly suited to deal with sparse polynomials
or polynomials defined by straight line programs, adaptively adjusts the
working precision to the conditioning of each root. In this way, only the
leading digits of the input coefficients sufficient to recover the requested
information on the roots are actually involved in the computation. This
feature makes our algorithm particularly suited to deal with polynomi-
als arising from certain symbolic computations where the coefficients are
typically integers with hundreds or thousands digits.

The present release of the software may perform different computations
such as counting, isolating or approximating (to any number of digits) the
roots belonging to a given subset of the complex plane. Automatic detec-
tion of multiplicities and/or of real/imaginary roots can be also performed.
Polynomials with approximately known coefficients are also allowed.

1 Introduction

MPSolve is a software tool for the numerical computation of the roots of a uni-
variate polynomial p(x) =

∑n
i=0 aix

i. The executable program of the package
is called unisolve (univariate polynomial solver).

In the present release the following features are available.

1

Input:

• The input polynomial can be provided either by means of the degree
n and the coefficients ai, i = 0, . . . , n of the univariate polynomial
p(x), or as a C program for the evaluation of the values of p(x), of
p′(x) and of an upper bound of |p(x)− fl(p(x))|, where fl(a) denotes
the value of the expression a computed in floating point arithmetic.

• The user can define both the input precision din and the desired out-
put precision dout expressed as decimal digits. The input precision
defines the polynomial neighborhood of p(x), i.e., the set of all the
polynomials with coefficients having din common digits with the cor-
responding coefficients of p(x), and the root neighborhood, i.e., the set
of the roots of all the polynomials in the polynomial neighborhood of
p(x). For polynomials having coefficients with infinite precision (say,
integer or rational) din must be set to zero.

Output:
In order to provide the user as much information as possible, MPsolve
outputs its approximations according to the following rules:

• For infinite precision input, i.e., for din = 0, the program delivers a
list of n complex numbers represented with at most dout digits. For
each number of this list, the displayed digits coincide with the digits
of the corresponding root of p(x). The number of displayed digits
reaches (or even may slightly exceed) the maximum value dout only
for those sets of roots that have at least dout common digits. Other-
wise it is displayed a number of digits sufficient to provide Newton-
isolated approximations of the roots. That is, the number of digits
is large enough to separate each root from the others and to guar-
antee the quadratic convergence of Newton’s iteration right from the
start when applied to the output approximation. For instance, for
the polynomial having the following 5 roots 1.11111111, 1.12222222,
1.1233333, 1/3, 1/3, and for the input din = 0, dout = 30 the pro-
gram would output the numbers (1.111, 0.0) (1.1222, 0.0) (1.12333,
0.0) (0.333333333333333333333333333333, 0.0)
(0.333333333333333333333333333333, 0.0).

• For input with a finite precision (din > 0) the program delivers a
list of n complex numbers having at most dout digits as in the case
of infinite precision. For each number z in this list there exists a
polynomial q(x) in the neighborhood of p(x) such that q(z) = 0.
Each root of p(x) has its corresponding approximation in the list.
Moreover, any polynomial q(x) in the neighborhood of p(x) has a
root that coincides with z in the leading displayed digits.

• If the output format -Of is chosen, the program delivers the numeri-
cal approximations to the roots with no filtering of the correct digits,

2

a guaranteed a posteriori error bound, a string of three characters
describing the status of the approximation. This string has the fol-
lowing meaning: the first character may take the following values:

– m: multiple root
– i: isolated root
– a: approximated single root (relative error less than 10−dout)
– o: approximated cluster of roots (relative error less than 10−dout)
– c: cluster of roots not yet approximated (relative error greater

than 10−dout)
The second character may take the following values

– R: real root
– r: non-real root
– I: imaginary root
– i: non-imaginary root
– w: uncertain real/imaginary root
– z: non-real and non-imaginary root

The third character may take the following values
– i: root in S
– o: root out of S
– u: root uncertain

• In certain cases it may happen that the relative error bound of the
computed approximations is greater than 1, i.e., there is no correct
bit in the output. This situation typically occurs, when the imagi-
nary (or real) part of a nonzero root is zero or is such that its ratio
with the real (imaginary) part has modulus less than 10−dout . In
this case the program outputs 0.0exx, where xx is the exponent of
the approximation of this number. Therefore, an output like (1.234,
0.0e-1000) means that the imaginary part, if nonzero, has a modulus
less than 10−1000. This lack of information is typical in numerical
computation when we have to deal with 0. Moreover, for polynomi-
als having coefficients with infinite precision, it is easy to overcome
this lack of information by using the reality or integrality of the coef-
ficients. This is performed automatically with the option -Dx, where
‘x’ may be r (real detect) i (imaginary detect) or b (both real and
imaginary detect). See the next section about the available options.
The uncertainty about the zero output is present also in the case
of polynomials p(x) having approximate input coefficients where the
root neighborhood of p(x) intersects zero. In this case the program
outputs 0.0 for those approximations belonging to the connected com-
ponent of the root neighborhood that intersects zero. However, these
(nonzero) approximations are reported integrally in the standard er-
ror if the switch -d (debug) is set or the output format -Of is chosen
(see the next section for more details).

3

Goals:
The program has been designed to deal with different goals. In particular
besides the goal “Newton isolation” described above (default option -Gi),
the program allows the further goals “approximation” (option -Ga) and
“count roots” (option -Gc). Moreover, by giving some command line
options, the user is enabled to restrict the search of the roots to specific
subsets of the complex plane (option -Sx), say, unit disk, right half-plane,
etc.), also the automatic detection of multiple roots (option -M) and/or of
real and imaginary roots (option -D) is fully implemented.

The program, based on the technique of simultaneous approximation of the
roots, makes use of a variant of the algorithms described in [1], [2]. Essentially,
the program constructs a sequence of sets A1 ⊃ A2 ⊃ A3 ⊃ . . . ⊃ Ak, where
each set Ai is the union of n disks, contains the root neighborhood of p(x),
and each disk contains at least one root. Moreover, each connected component
of Ai contains as many roots of any polynomial in the neighborhood of p(x)
as the number of disks that make up the component. Each set Ai is obtained
by performing the computation with increasing levels of working precision w1,
w2, . . ., starting with the standard machine precision (w1 = 53 bits for the
IEEE standard) and doubling the precision at each stage, i.e. wi+1 = 2wi,
until either all the disks are Newton–isolated or the output precision has been
reached, or the working precision becomes larger than the input precision, i.e.,
wi > 4ndin log2 10.

The main engine for shrinking the disks is Aberth’s iteration. In order to
accelerate the shrinking speed, a suitable strategy for the detection and analysis
of clusters (connected components of Ai) is used together with the application
of the restarting criterion of [1] for choosing new centers for the disks in the
clusters by means of the computation of a convex hull.

2 Outline of the algorithm

The program tries to perform the most part of the computation in the lowest
working precision starting with the standard machine precision and switching to
multiple precision only if needed. In this way, for polynomials having only few
ill conditioned roots the (more expensive) mp version of the algorithm is applied
just for the ill conditioned roots with a substantial saving of the computation
time. This is made possible since our algorithm does use the “clean” information
given by the coefficients of p(x) at each step of the computation, in fact, it does
not compute the explicit factorization of the polynomial. Algorithms based on
explicit factorizations need a high precision computation of the coefficients of
the factors obtained just at the first splitting stage even though the factors have
only few ill conditioned roots.

This feature of using at each stage the information of the coefficients of
p(x) is particularly useful for sparse polynomials where the computation of
p(x) becomes very cheap. In fact, we have implemented a sparse version of

4

the Ruffini-Horner rule for the computation of p(x) and of p′(x). The higher
speed of this sparse version can be exploited at each level of our algorithm for
polynomial roots.

Moreover, the program allows also to use polynomials defined by straight
line programs. For instance the polynomial pk of degree n = 2k − 1 defined as

p0(x) = 1
pi(x) = x(pi−1(x))2 + 1, i = 1, 2, . . . , k, (1)

having roots strictly related to the Mandelbrot set, can be computed with just
3k arithmetic operations and the computation is more accurate.

Another feature of our algorithm is that it allows to use only those digits of
the input coefficients that are strictly needed for the requested approximation.
More specifically, it is typical in symbolic computation to encounter polynomials
with integer coefficients having hundreds or even thousands digits. Very often,
in order to separate or to count the (real) roots of such polynomials only few
leading digits of the coefficients are enough. MPSolve, starts the computation
with using few leading digits of the coefficients, and doubles the number of
them at each step of the computation until the requested goal is reached. This
leads to a substantial saving of the time cost in many concrete situations with
respect to other algorithms based on explicit factorization. Typically, for the
latter class of algorithms, the useful information that initially is confined in the
leading digits of the coefficients, is scrambled in all the (many) digits of the
coefficients of the factors after just the first factorization step.

3 Notes on the implementation

The program is written in ANSI C, makes use of the GMP multiprecision
package, and of the extended types package MT (More Types) written by G.
Fiorentino. Besides the type double, and cplx (implementing complex num-
bers having standard C double real and imaginary parts) the package uses the
rdpe and the cdpe types consisting in real and complex numbers where the real
components are represented as a pair (mantissa, exponent), with a C double
mantissa and a long int exponent. The latter types are needed to perform
computation within the precision (and with a slightly higher cost) of that of
double, but allow a much wider range that avoids overflow and underflow sit-
uations. The notation “dpe”, which means Double Precision and Exponent, is
borrowed by the MPFun package by D. Bailey. For higher precision compu-
tation MPSolve uses the multiprecision types of GMP and the multiprecision
complex type mpc implemented by G. Fiorentino.

In order to achieve a high speed of computation, almost all the sub-algorithms
of the package have been implemented in three slightly different versions: the
“float” version, the “dpe” version and the “mp” version.

5

4 Using MPSolve

The executable program of the package MPSolve is called unisolve and can be
used as:

unisolve options input file

If the input file is missing then unisolve will read from the standard input
stream (typically the keyboard).

Options and directives

The program unisolve allows many options to change its default behavior, here
is the list:

-Gx: goal of the computation. Three goals are possible:

i: isolate (default)

a: approximate

c: count

For instance, unisolve -Gi isolates the roots of the polynomial

-Sx: set where the program looks for the roots. The available sets are

a: all the complex plane (default)

l: left half plane {z ∈ C : Re(z) < 0}
r: right half plane {z ∈ C : Re(z) > 0}
u: upper half plane {z ∈ C : Im(z) > 0}
d: (down) lower half plane {z ∈ C : Im(z) < 0}
i: inside the unit disk {z ∈ C : |z| < 1}
o: outside the unit disk {z ∈ C : |z| > 1}
R: Real line {z ∈ C : Im(z) = 0}
I: Imaginary line {z ∈ C : Re(z) = 0}

For instance, unisolve -Gc -SR counts the real roots of the polynomial,
unisolve -Gi -So isolates the roots out of the unit disk.

-Dx: the program detects if the root is real/imaginary. For a detected real root
the imaginary part is written as ‘0’, similarly, the real part of a detected
imaginary root is written as ‘0’. The options are:

r: detect real

i: detect imaginary

b: detect both real and imaginary roots.

n: do not detect (default)

6

-Mx: the program detects if there are multiple roots there are two options detect
-M+, do not detect -M- (default).

-d: if this switch is set then the program writes, in the standard error, infor-
mation about the execution of the program. By using the modifier -d1 all
output goes to the standard output stream.

-ix: input precision in digits. If, say, the option -i100 is set, then it is assumed
that the coefficients of the input polynomial have 100 correct digits. This
value overwrites the precision assigned in the input file. The option -i0
(default) means infinite precision.

-ox: output precision. If, say, the option -o100 is set, then the program will
isolate/approximate/count the roots of the polynomial up to the precision
of 100 digits. The default value is 30 digits. The detection of multiplicities
and of real/imaginary roots, that are based on the computation of the
Mahler bound, are affected by this value.

-Ox: output format. The options for x are (here re and im denote real and
imaginary parts of the root, respectively):

c: compact form (default): (re, im)

b: bare format: re \tab im

g: ”Gnuplot”, low precision format: re im, well suited as gnuplot input

v: verbose: Root(i) = re ± I im

f: full information: (re, im), a posteriori error bound, status of the
approximation.

With the option -Of the real and imaginary parts are written integrally
with no filtering of the correct digits. The status of the approximation is
a triple of characters with the following meaning:

• First character: (cluster, isolated, approximated, multiplicity)

m: multiple root
i: isolated root
a: approximated single root (relative error less than εout)
o: approximated cluster of roots (relative error less than εout)
c: cluster of roots not yet approximated (relative error greater than

εout)

• Second character: (real/imaginary roots)

R: real root
r: non-real root
I: imaginary root
i: non-imaginary root
w: uncertain real/imaginary root

7

z: non-real and non-imaginary root

• Third character (set S)

i: root in S
o: root out of S
u: root uncertain

-Lpx: maximum number of iterations per packet (default 10). The Ehrlich-
Aberth iterations are grouped into packets. The number of iterations per
packet can be modified.

-Lix: maximum number of global iterations (default 100). The number of
packets of the Ehrlich-Aberth iteration can be modified. Increasing this
number may be needed for dealing with exceptionally hard polynomials.

The input file

The input file must contain:

• some optional lines of comments, introduced by the character ‘!’.

• a string of three characters abc where the first character of the string
specifies the way the polynomial is assigned, the second and the third
specify the type of the coefficients.

• the input precision of the coefficients, in digits (0 means infinite precision).

• degree and coefficients of the polynomial coded according to the values of
abc.

More precisely:

a=‘s’ means sparse polynomial;
a=‘d’ means dense polynomial;
a=‘u’ means polynomial provided by the user by

means of a c program in the file mps_usr.c
(a sample of this file is provided for the
Mandelbrot polynomial);

b=‘r’ means real coefficients;
b=‘c’ means complex coefficients;

c=‘i’ means integer real/imaginary parts;
c=‘q’ means rational real/imaginary parts;
c=‘b’ means bigfloat real/imaginary parts;
c=‘f’ means float real/imaginary parts.

For a=‘s’ the file contains:

8

n: the degree of the polynomial;
n_coeff: the number of the nonzero coefficients;
i: indices of the generic nonzero coefficient;
a_i: the coefficient of x^i;
... the order of this list of coefficients is

not relevant.

For a=‘d’ the file contains:

n: the degree of the polynomial
a_0 constant coefficient
a_1 coefficient of x
...

For b=‘r’ the coefficients are stored as single number for c 6= ‘q’ while for c=‘q’,
they are stored as

num: numerator
den: denominator

For b=‘c’ the coefficient are stored as pairs provided that c 6= ‘q’, i.e.,

re: real_part
im: imaginary_part

otherwise, for c=‘q’ they are stored as quadruples:

real_numer: numerator of the real part
real_denom: denominator of the real part
imag_numer: numerator of the imaginary part
imag_denom: denominator of the imaginary part

For instance the following data defines the Kameny polynomial

! Kameny polynomial, sparse, complex, integer.
! p(x)=ic^3 x^7+ c^4 x^2- 6c^2x+9, c=10^6
sci
0
7
4
0
9
0
1
-6000000000000
0
2
10000000000000000000000010
0
7
0
1000000000000000000

9

The following data define the Wilkinson polynomial of degree 20.

! Wilkinson polynomial n=20: p(x)=\prod_{i=0}^n (x-i)
dri
0
20
2432902008176640000
-8752948036761600000
13803759753640704000
-12870931245150988800
8037811822645051776
-3599979517947607200
1206647803780373360
-311333643161390640
63030812099294896
-10142299865511450
1307535010540395
-135585182899530
11310276995381
-756111184500
40171771630
-1672280820
53327946
-1256850
20615
-210
1

Finally, the data

uri
0
511

define the user polynomial (by default it is the Mandelbrot polynomial) of degree
511.

The program writes to the standard output stream, and, if the -d switch is
set, also to the standard error stream. The information written in the standard
output are: the approximations of the roots, where each root is written as
(real part, imaginary part). The information written to the standard error
stream concern the execution of the program, moreover, also the approximations
of the roots are reported, where the roots are not replaced by 0.0 if the relative
error is greater than 1. Also the absolute error bound of each approximation
is reported. This information may be useful in the case of polynomials with
approximate input.

10

5 The test suite

Some input test polynomials are provided in the directory Data; the directory
Results contains output files for some of the test polynomials.

The test polynomials have the following features:

• The polynomials from spiral10 to spiral30 are defined by

p(x) = (x+ 1)(x+ 1 + a)(x+ 1 + a+ a2)...(x+ 1 + a+ a2 + ...+ an),
a = i/1000, i2 = −1, n = 10, 15, 20, 25, 30.

The polynomials from geom1 10 to geom1 40 and from geom2 10 to geom2 40
are defined by p(x) = (x + 1)(x + a)(x + a2)...(x + an−1), with a = 100i
and a = i/100. respectively. The polynomials from geom3 10 to geom3 80
are defined by 4n(n+1)/2

∏n
i=1(x− 1/4i), for n = 10, 20, 40, 80. The poly-

nomials from geom4 10 to geom4 80 are defined by
∏n
i=1(x − 4i) for n =

10, 20, 40, 80.

• The polynomials from easy100 to easy6400 are defined by p(x) =
∑n
i=0(i+

1)xi, for 100, 200, 400, 800, 1600, 3200, 6400.

• The polynomials from mandel31 to mandel1023 are the Mandel polynomi-
als of degrees from 31 to 1023, defined in section 1 and assigned in terms
of their coefficients.

• The polynomials from umand31 to umand2047 are the Mandel polynomials
of degrees from 31 to 2047, assigned in terms of a straight line program
(file mps usr.c).

• The polynomials from exp50 to exp400 are the truncation of the exponen-
tial series to the degree n = 50, 100, 200, 400, respectively, i.e.,

∑n
i=0 x

i/i!.

• Curz polynomials of degree 20 40 80 160 curz20–curz160 defined by:
pj+1(x) = x

∑j−1
i=0 pj−i(−1)i/(i + 1) + (−1)j/(j + 1), j = 1, 2, . . ., for

p1 = 1.

• The polynomials kam1 1, kam1 2, kam1 3 belong to the class

(x− 3c2)2 + icx7,

for c = 10−6, 10−20, 10−70, respectively. The polynomials have two simple
complex roots with extremely small real separation (33, 113, 385, com-
mon digits respectively) and imaginary parts close to zero (of modulus
about 10−44, 10−149, 10−524, respectively). The remaining roots are well
separated.

• The polynomials kam2 1, kam2 2, kam2 3 belong to the class

(c2x2 − 3)2 + ic2x9,

11

for c = 106, 1020, 1070, respectively. The polynomials have four simple
complex roots with small imaginary parts (10−27, 10−90, 10−315, respec-
tively,) in two close sets (21, 70, 247 common digits). The remaining
roots are well separated.

• The polynomials kam3 1, kam3 2, kam3 2 belong to the class

(c2x2 − 3)2 + c2x9,

for c = 106, 1020, 1070, respectively. The polynomials have two extremely
close real roots (20, 70, 247 common digits) plus a complex pair with
extremely small imaginary parts
(10−27, 10−90, 10−315) The remaining roots are well separated, one of them
is real.

• The polynomial kam4 is defined as follows.

x14 + 2 · 1024 · x11 + 1048 · x8 + 4 · x7 − 4 · 1024 · x4 + 4

The polynomial has a cluster of 8 roots of modulus 1.89 ·10−6, a cluster of
6 roots having modulus 108. The cluster made up by 8 roots has: two real
roots having 21 common digits two pairs of complex roots having small
real parts, and imaginary parts with 21 common digits The cluster made
up by 6 roots has two very close real roots matching in their first 28 digits,
and 2 very close complex pairs whose real and imaginary parts match in
their first 27 digits.

• The polynomials from mig1 20, to mig1 500, and from mig1 50 1 to
mig1 500 1 are Mignotte-like polynomials in the class

xn + (ax+ 1)m, n >> m > 1, |a| > 1,

These polynomials have m very close roots around −1/a. The polynomials
have been chosen by setting m = 3 and m = 31.

• The polynomial mig2 is defined by

(xn−k + (ax+ 1)m)(ax+ 1)k, n >> m > 1, n >> k > 1, |a| > 1,

for n = 20,m = 3, k = 3, a = 100i. The polynomial has a cluster of m very
close roots around −1/a where −1/a is also a multiple root of multiplicity
k.

• The polynomials lar1 and lar1 200 are defined as

xn + 10300x14 + x5 + 1,

have a coefficient with modulus close to the largest number representable
as double in the IEEE standard. Overflow conditions/failure are likely
for programs that do not use extended arithmetic. The polynomials are
obtained with a = 1 and n = 20, 200, respectively.

12

• The polynomial lar2 is defined by

xn + x11 + 10300x+ 10−300, n = 20.

The polynomial has coefficients that have modulus close to the largest
and to the smallest numbers representable as double in the IEEE stan-
dard. Overflow conditions/failure are likely for programs that do not use
extended arithmetic. The polynomial, even if its coefficients are repre-
sentable as double, has a root which is too small in order to be represented
as a nonzero double.

• the polynomial lar3 is defined by

10−200xn + 10200xn−1 + 10200, n = 20

The polynomial cannot be normalized in the standard IEEE arithmetic
without generating an overflow condition. The polynomial, even if its
coefficients are representable as double, has a root which cannot be rep-
resented as a double without generating an overflow condition. Failure is
likely for programs that do not use extended arithmetic.

• The polynomial lar4 is defined by 1020 + 102000x19 + 10−1600x23.

• The polynomial lar5 is defined by 102000 + 102000x19 + 10x20.

• Polynomial lsr1

1 + 30000x+ 300000000x2 + 1000000000000x3 + x200 + 400000000x298+
12000000040000x299 + 120000001200000001x300+
400000012000000030000x301 + 40000000300000000x302+
1000000000000x303 + 400000000x498+
40000x499 + x500

The polynomial has a cluster of two very close roots of large moduli and
a cluster of three very close roots of small moduli.

• Polynomial lsr2 given by

x500 + 100200x499 + 10500x495 + 10499x480 + 103x3 + 3 · 102x2 + 30x+ 1

The polynomial has roots with large and small moduli.

• Polynomial lsr3 defined by 1+x∗30+x2 ∗300+x3 ∗1000+x480 ∗10495 +
x495 ∗ 10500 + x499 ∗ 10200 + x500.

• Polynomials lsr4 1,lsr4 2, lsr4 3 are given by (x50 + 1)(x2 +ax+a−1),
a = 1010, 1020, 1040, respectively.

• Polynomial lsr 200 (x12 − (1020x− 1)4)(1 + (1020 + x)4x8)(x200 + 1).
There are 4 roots of modulus 10−20 matching in the first 60 digits and 4
roots of modulus 1020 matching in the first 60 digits.

13

• Polynomial lsr 24 (x12 − (1020x− 1)4)(1 + (1020 + x)4x8).
There are 4 roots of modulus 10−20 matching in the first 60 digits and 4
roots of modulus 1020 matching in the first 60 digits.

• The polynomials from nroots50 to nroots1600 are of the kind zn − 1,
n = 50, 100, 200, 400, 800, 1600.

• The polynomials from wilk20 to wilk320 are the Wilkinson polynomial
of degree 20,40,80,160,320, defined by

n∏
i=1

(x− i), (n = 20).

Coefficients are very large and the roots are very ill-conditioned already
for n = 20. The condition number of the roots, for n = 20 ranges from
420 to 1014.

• The polynomial wilk mod1 is a modified Wilkinson polynomial defined as
follows

((x10/1020 + (x− 10)2)
20∏
i=1

(x− i).

The polynomial is obtained by multiplying Wilkinson’s polynomial of de-
gree 20 with a Mignotte-like polynomial having two roots close to 10.
Besides the ill conditioning of the integer roots, there is a cluster of two
roots close to 10. The condition number of the root 10 is about 1026.

• The polynomial wilk mod2 is a modified Wilkinson polynomial defined as

20∏
i=1

(x− i)(x− 20)2.

Besides the ill conditioning of the roots, there is a multiple root.

• The polynomials kir1 10, kir1 20, kir1 40, proposed by Peter Kirrinnis,
are defined as follow (z4−1/16)n(z4−(1/2+eps)4)16n/eps4, eps = 1/4096,
n = 10, 20, 40 and have degree 4n+4. They have multiple roots with high
multiplicity and some of them clustered.

• The polynomials kir1 10 mod, kir1 20 mod, kir1 40 mod, are obtained
by adding z4n+4 to the Kirrinnis polynomials. In this way they are defined
as follow (z4 − 1/16)n(z4 − (1/2 + eps)4)16n/eps4 + z4n+4, eps = 1/4096,
n = 10, 20, 40 and have degree 4n+ 4. They have simple clustered roots.

• The polynomial nektarios, provided by Nektarios Psycaris, has degree
648 and arises in the study of certain problems in physics.

• The polynomial trv m, provided by Carlo Traverso, arises from the sym-
bolic processing of a system of polynomial equations. It has multiple
roots.

14

• The polynomial katsura8 arises from the symbolic preprocessing of a
system of polynomial equations.

• The polynomials chrm* are chromatic polynomials.

The HTML file bench.htm in the Doc directory reports the timings, in sec-
onds, of the programs NSolve, fsolve, polroots and unisolve of the packages
Mathematica, Maple, Pari and MPSolve respectively. All computations have
been performed on a Pentium 200 MMX with 64 Mb of physical RAM.

We performed computations with several goals, like isolating all the roots,
approximating all of them with 50 or 1000 digits, counting the real roots or
those in the unit disk or those in the right half plane, approximating only real
roots, etc.

Failures, denote with an ‘F’ in the table, occurred in Maple for internal er-
rors like ‘unable to compute the norm’, or for unsuccessful computation of the
roots. In Pari we had failures only due to stack overflows, while in Mathematica
we had unsuccessful computation of the roots. We point out that the Math-
ematica command NSolve, when used with the d digits of working precision,
say NSolve[p[x]==0,x,100] for d = 100, does not guarantee d correct output
digits. In fact the number of correct output digits depends on the conditioning
of the root. In particular, in the case of a root of multiplicity m, in order to have
at least k correct digits we had to choose d = km, i.e., to type NSolve[p[x]==0,
x, k*m].

Timings are complete only for the package MPSolve.

6 User defined polynomials.

The file mps user.c contains the “user defined polynomial”, more precisely, the
programs fnewton usr, dnewton usr, mnewton usr that are the float, dpe,
mp versions, respectively of the same computation. Actually, the float version
is not used by unisolve (indeed, the float version cannot be as robust as the dpe
version for overflow reasons) and has been inserted as a more readable example.

Given on input the value of x, each program in the file mps user.c must
compute:

• The value of p(x)

• The value of p′(x)

• An upper bound σ to the number |p(x) − fl(p(x))|, where fl(·) denotes
the floating point computation of the expression between parentheses,

and output the following values:

• the Newton correction corr= p(x)/p′(x);

• the inclusion radius rad= n(|p(x)|+ σ)/|p′(x)|;

15

• the Boolean value again= (|fl(p(x))| > σ), where if again is true then
the Newton iteration is continued. Observe that again true means that
the computed value is affected by a relative roundoff error less than 1,
i.e., |fl(p(x))−p(x)|/|fl(p(x))| < σ/fl(p(x)) < 1. Therefore it brings still
information.

Indeed, computing p(x) and p′(x) is almost straightforward if the formal
relations defining the polynomial are known. For instance, for the Mandelbrot
polynomial defined in (1), it is immediate to write a program computing p(x).
For the computation of p′(x) we may use the following relation obtained by
differentiating (1).

p′0 = 0
p′i = p2

i−1 + 2 · x · pi−1 · p′i−1

In order to implement the stop condition and to give a guaranteed a-posteriori
error bound, a rounding error analysis of the computation must be performed.

Let us show this for the Mandelbrot polynomial. Let p̃ = fl(p) denote
the value obtained by applying (1) in floating point arithmetic with machine
precision µ and recall the following relations (compare [1]) fl(a∗b) = a∗b(1+ε)
and fl(a + b) = (a + b)(1 + δ), where |ε| < 2

√
2µ and |δ| < µ, which hold for

complex values a, b that do not generate overflow/underflow in the computation
of a+ b and a ∗ b (here µ is the machine precision).

By applying the above relations to (1) we easily obtain

p̃i = xp̃2
i−1(1 + θi) + (1 + σi)

|θi| < 6.7µ+O(µ2), |σi| < µ+O(µ2)

Subtracting both the members of the above relation and of (1), ignoring O(µ2)
terms yields the following expressions that allow us to compute a bound to the
absolute error ei = |pi − p̃i|

e0 = 0
ei < 2|x| · ei−1|p̃i−1|+ 7.7(|x| · |p̃i−1|+ 1)µ

The rounding error analysis can be performed in a rough way obtaining very
weak bounds, or in a very accurate way obtaining sharp bounds.

The more accurate is the roundoff error bound, the more efficient is the stop
criterion.

References

[1] D. A. Bini and G. Fiorentino, Design, Analysis, and Implementation of a
Multiprecision Polynomial Rootfinder, Numerical Algorithms, 23, 2000, 127–
173.

[2] D. A. Bini, Numerical computation of polynomial zeros by means of
Aberth’s method, Numerical Algorithms, 13, 1996, 179–200.

16

[3] D. A. Bini and G. Fiorentino, A multiprecision implementation of a poly-
algorithm for univariate polynomial zeros, Proc. of The POSSO Workshop on
Software, Paris, 1995, J.C. Faugère, J. Marchand, R. Rioboo editors.
[4] F. Rouillier, RUR, FRISCO Report 3.3.2.3.1.

17

